リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「次世代吸着剤の表面形状及び表面エネルギーに関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

次世代吸着剤の表面形状及び表面エネルギーに関する研究

エム, エル, パラシュ L, PALASH, M 九州大学

2020.09.25

概要

The demand for adsorption technologies is rapidly rising in various applications due to its applicability in utilizing low-temperature heat sources (industrial waste heat or solar heat) and environmentally friendly refrigerators (H2O, CO2, NH3, CH4O, etc.). The application area includes but not limited to refrigeration & heat pumping, water production & treatment, air conditioning & thermal comfort, and thermal energy storage. The critical component of the adsorption technologies is the porous materials, known as adsorbents. The morphological features of the adsorbents require to have some distinctive features like high surface area, meso or microporosity, and optimum affinity towards refrigerants to become suitable for the adsorption-based systems. Many promising adsorbents (silica gel, activated carbons, metal-organic frameworks) are already synthesized having the mentioned features; still, there is no clear breakthrough in adsorption systems found. One of the reasons behind this is the existing gap between material science (MS) and applied thermal engineering (ATE). This research gap predominantly depends on the existence of the intermediate characterization technique, which supposes to relate the morphological features with the adsorption phenomenon. Recently, it is found that the surface energy of the adsorbents plays a vital role in developing a universal model for all eight major types of isotherms. Therefore, it is assumed that surface energy might be the predicted intermediate characterization technique that can mitigate the existing gap up to some reasonable level between MS and ATE.

The surface energy is a distinctive feature of adsorbents, which is rarely measured; indeed, it carries essential information for the adsorption process. The surface morphological characterization alone does not provide the full feature of a surface; it is vitally required to measure the surface activities which can be performed by surface energy measurements. From the above perspective, this thesis emphasizes the novel characterization techniques that can employ in developing promising adsorbents for adsorption-based systems. The research stresses several factors, firstly, extracting the morphological and surface activity information of the promising adsorbents using novel characterizing techniques. Secondly, finding a thermodynamic relationship between surface activities with the texture properties. Finally, it includes the synthesis and characterization of metal-organic frameworks to enhance the performance of adsorption chillers, which concludes with an insight of the enhancement from the surface energy point of view.

At first the three-dimensional morphological features are extracted using an atomic force microscopy (AFM) equipment, which is further employs to calculate the surface porosity information. Additionally, a novel approach is developed to measure the adsorbent surfaces to generate height images.

Secondly, the surface energy analysis in the infinite dilution was performed by the Inverse Gas Chromatography (IGC) technique to measure the dispersive and specific components for various promising silica gels (RD silica gel, Chromatorex, Home silica gel, and B-type silica gel). From the experiment the dispersive component is found dominating, and the highest value was observed for RD granular silica gel. It is predicted that the higher the surface energy in the infinite dilution, the higher will be the adsorption uptake because surfaces contain high energy sites that might contribute significantly to the adsorption process. These results led to further experiments on the activated carbon-based adsorbents, which exhibits high surface energy (>200 mJ m-2) than the silica gels (<100 mJ m-2).

The next experiments conducted on the activated carbons (Maxsorb III, WPT-AC, H2- treated Maxsorb) were slightly different from that of silica gels. Here, the measurement of isosteric heat and isotherms in the Henry region were targeted to calculate the energetic behaviors of a single component adsorbate-adsorbent system (ethanol-activated carbon pair) in terms of enthalpy and entropy. A thermodynamic trend is established between the specific entropy and the Henry’s law constant including the pore volume of adsorbents, and one can predict the isosteric heats and adsorbent-pore-size for activated carbon + ethanol system by extending the proposed linear trend, which is predicted to significantly contribute in tailoring the adsorbent materials for the design of adsorption bed with a minimal or maximum driving force depending on the types of heat transformation applications. However, the improvement mostly depends on the modification of the pores and surface area, which might limit the tailoring efficiency. In addition, from the previous two experiments, it is predicted that, creating charge disparity inside the adsorbents might increase the specific surface energy which has a possibility to improve the total surface energy. In that case, metal-organic frameworks are promising due its exceptional interior decoration and tailoring capability, so that, the predicted charge disparity can be implemented.

A rigorous review on promising MOFs and their modification were performed to select the suitable MOF for adsorption chiller applications. After synthesizing a wide variety of MOFs (Aluminium Fumarate, MIL-101 (Fe), MIL-100(Fe), MOF-74 (Co), MOF-74(Ni),
CAU-10H, HKAUST-1), aluminum fumarate was selected for analysis and modification. A modified protocol was used to synthesis a tailored MOF which is developed in our laboratory (SMOF) to enhance the yield and water adsorption uptake. The SMOF is then doped with various concentration metal ions (Fe, Co) to observe the variation on water adsorption isotherms. Interestingly found that the newly synthesized SMOF exhibits significantly high uptake and shifts the water adsorption isotherms towards the lower pressure region. Both the findings are crucial for the development of adsorption chillers; the analysis shows that SMOF improves the specific cooling efficiency (SCE) up to 150%.

To deliver an insight into the improvement, the surface energy of the SMOFs was conducted in the lower pressure region. A comparison of surface energy components between the SMOFs reveals that the dispersive surface energy of the doped SMOFs was significantly improved. However, the doped ions only contributed to tailoring the morphological properties. Further studies on finite dilution will reveal much interesting information which will help to synthesize next generation adsorbents.

この論文で使われている画像

参考文献

[1] P.O. FANGER, Thermal comfort. Analysis and applications in environmental engineering., Danish Technical Press, 1970.

[2] Y. Fan, L. Luo, B. Souyri, Review of solar sorption refrigeration technologies: Development and applications, Renew. Sustain. Energy Rev. 11 (2007) 1758–1775. doi:10.1016/J.RSER.2006.01.007.

[3] W. Pridasawas, Solar-Driven Refrigeration Systems with Focus on the Ejector Cycle, Royal Institiute of Technology, KTH, Denmark, 2006.

[4] J. Henley, World set to use more energy for cooling than heating, (2015). https://www.theguardian.com/environment/2015/oct/26/cold-economy-cop21-global- warming-carbon-emissions (accessed February 13, 2018).

[5] A.M. Qenawy, A.A. Mohamad, Current Technologies and Future Perspectives in Solar Powered Adsorption Systems, in: Can. Sol. Build. Conf., 2004.

[6] D.X. Wang, A.N. Bao, W. Kunc, W. Liss, Coal power plant flue gas waste heat and water recovery, Appl. Energy. (2012). doi:DOI 10.1016/j.apenergy.2011.10.003.

[7] K.R. Ullah, R. Saidur, H.W. Ping, R.K. Akikur, N.H. Shuvo, A review of solar thermal refrigeration and cooling methods, Renew. Sustain. Energy Rev. 24 (2013) 499–513. doi:10.1016/J.RSER.2013.03.024.

[8] M.A. Alghoul, M.Y. Sulaiman, B.Z. Azmi, M.A. Wahab, Advances on multi-purpose solar adsorption systems for domestic refrigeration and water heating, Appl. Therm. Eng. 27 (2007) 813–822. doi:10.1016/J.APPLTHERMALENG.2006.09.008.

[9] Y. Aristov, Concept of adsorbent optimal for adsorptive cooling/heating, Appl. Therm. Eng. 72 (2014) 166–175. doi:https://doi.org/10.1016/j.applthermaleng.2014.04.077.

[10] D. Do Duong, Adsorption Analysis: Equilibria and Kinetics, World Scientific, 1998.

[11] R.C. Bansal, M. Goyal, Activated carbon adsorption, CRC Press, Boca Raton, 2005.

[12] F. Schüth, K.S.W. Sing, J. Weitkamp, Handbook of porous solids, Wiley-VCH, 2002. http://hdl.handle.net/2324/1842737 (accessed January 22, 2018).

[13] D.W. Bruce, D. O’Hare, R.I. Walton, Porous materials, Wiley, 2011. http://hdl.handle.net/2324/1848600 (accessed February 18, 2018).

[14] I.I. El-Sharkawy, A. Pal, T. Miyazaki, B.B. Saha, S. Koyama, A study on consolidated composite adsorbents for cooling application, Appl. Therm. Eng. 98 (2016) 1214–1220. doi:10.1016/J.APPLTHERMALENG.2015.12.105.

[15] R.K. Iler, The chemistry of silica : solubility, polymerization, colloid and surface properties, and biochemistry / Ralph K. Iler, Wiley, 1979. http://hdl.handle.net/2324/1000468809 (accessed February 18, 2018).

[16] Y.I. Aristov, M.M. Tokarev, A. Freni, I.S. Glaznev, G. Restuccia, Kinetics of water adsorption on silica Fuji Davison RD, Microporous Mesoporous Mater. 96 (2006) 65–71. doi:10.1016/J.MICROMESO.2006.06.008.

[17] K.C. Ng, H.T. Chua, C.Y. Chung, C.H. Loke, T. Kashiwagi, A. Akisawa, B.B. Saha, Experimental investigation of the silica gel–water adsorption isotherm characteristics, Appl. Therm. Eng. 21 (2001) 1631–1642. doi:10.1016/S1359-4311(01)00039-4.

[18] B.B. Saha, A. Akisawa, T. Kashiwagi, Silica gel water advanced adsorption refrigeration cycle, Energy. 22 (1997) 437–447. doi:10.1016/S0360-5442(96)00102-8.

[19] S.S. Kistler, Coherent Expanded Aerogels, Rubber Chem. Technol. (1932). doi:10.5254/1.3539386.

[20] J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowicz, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H. Olson, E.W. Sheppard, S.B. McCullen, J.B. Higgins, J.L. Schlenker, A new family of mesoporous molecular sieves prepared with liquid crystal templates, J. Am. Chem. Soc. 114 (1992) 10834–10843. doi:10.1021/ja00053a020.

[21] V. Meynen, P. Cool, E.F. Vansant, Verified syntheses of mesoporous materials, Microporous Mesoporous Mater.125 (2009)170–223. doi:10.1016/J.MICROMESO.2009.03.046.

[22] I. Glaznev, I. Ponomarenko, S. Kirik, Y. Aristov, Composites CaCl2/SBA-15 for adsorptive transformation of low temperature heat: Pore size effect, Int. J. Refrig. 34 (2011) 1244–1250. doi:10.1016/J.IJREFRIG.2011.02.007.

[23] I.A. Simonova, A. Freni, G. Restuccia, Y.I. Aristov, Water sorption on composite “silica modified by calcium nitrate,” Microporous Mesoporous Mater. 122 (2009) 223–228. doi:10.1016/J.MICROMESO.2009.02.034.

[24] Y.. Aristov, G. Restuccia, G. Cacciola, V.. Parmon, A family of new working materials for solid sorption air conditioning systems, Appl. Therm. Eng. 22 (2002) 191–204. doi:10.1016/S1359-4311(01)00072-2.

[25] A. Pal, I.I. El-Sharkawy, B.B. Saha, S. Jribi, T. Miyazaki, S. Koyama, Experimental investigation of CO2adsorption onto a carbon based consolidated composite adsorbent for adsorption cooling application, Appl. Therm. Eng. (2016). doi:10.1016/j.applthermaleng.2016.08.031.

[26] International Zeolite Association, (n.d.). http://www.iza-online.org/ (accessed February 19, 2018).

[27] T.J. Barton, L.M. Bull, W.G. Klemperer, D.A. Loy, B. McEnaney, M. Misono, P.A. Monson, G. Pez, G.W. Scherer, J.C. Vartuli, O.M. Yaghi, Tailored Porous Materials, Chem. Mater. 11 (1999) 2633–2656. doi:10.1021/cm9805929.

[28] R. Xu, Chemistry of zeolites and related porous materials : synthesis and structure, John Wiley & Sons (Asia), 2007. http://hdl.handle.net/2324/1837049 (accessed February 19, 2018).

[29] J. Jänchen, D. Ackermann, H. Stach, W. Brösicke, Studies of the water adsorption on Zeolites and modified mesoporous materials for seasonal storage of solar heat, Sol. Energy. 76 (2004) 339–344. doi:10.1016/J.SOLENER.2003.07.036.

[30] R.E. Critoph, Y. Zhong, Review of trends in solid sorption refrigeration and heat pumping technology, Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. (2005). doi:10.1243/095440805X6982.

[31] M. Pons, F. Meunier, G. Cacciola, R.. Critoph, M. Groll, L. Puigjaner, B. Spinner, F. Ziegler, Thermodynamic based comparison of sorption systems for cooling and heat pumping: Comparaison des performances thermodynamique des systèmes de pompes à chaleur à sorption dans des applications de refroidissement et de chauffage, Int. J. Refrig. 22 (1999) 5–17. doi:10.1016/S0140-7007(98)00048-6.

[32] M.A. Lambert, B.J. Jones, Review of Regenerative Adsorption Heat Pumps, J. Thermophys. Heat Transf. 19 (2005) 471–485. doi:10.2514/1.8075.

[33] N. Douss, F. Meunier, Effect of operating temperatures on the coefficient of performance of active carbon-methanol systems, Heat Recover. Syst. CHP. 8 (1988) 383–392. doi:10.1016/0890-4332(88)90042-7.

[34] S. Follin, V. Goetz, A. Guillot, Influence of Microporous Characteristics of Activated Carbons on the Performance of an Adsorption Cycle for Refrigeration, Ind. Eng. Chem. Res. 35 (1996) 2632–2639. doi:10.1021/ie950638x.

[35] Z. Tamainot-Telto, S.J. Metcalf, R.E. Critoph, Y. Zhong, R. Thorpe, Carbon–ammonia pairs for adsorption refrigeration applications: ice making, air conditioning and heat pumping, Int. J. Refrig. 32 (2009) 1212–1229. doi:10.1016/J.IJREFRIG.2009.01.008.

[36] J. Miyawaki, H. Kil, K. Hata, K. Ideta, T. Ohba, H. Kanoh, I. Mochida, K. Nakabayashi, S.-H. Yoon, Development of innovative activated carbons for adsorption heat pumps, in: Innov. Mater. Process. Energy Systerms, Midori Printing CO. LTD., Sicily, 2016: pp. 11–14.

[37] H. Li, M. Eddaoudi, M. O’Keeffe, O.M. Yaghi, Design and synthesis of an exceptionally stable and highly porous metal-organic framework, Nature. 402 (1999) 276. http://dx.doi.org/10.1038/46248.

[38] O.M. Yaghi, M. O’Keeffe, N.W. Ockwig, H.K. Chae, M. Eddaoudi, J. Kim, Reticular synthesis and the design of new materials, Nature. 423 (2003) 705. http://dx.doi.org/10.1038/nature01650.

[39] G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé, I. Margiolaki, A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area, Science (80-. ). 309 (2005) 2040 LP – 2042. http://science.sciencemag.org/content/309/5743/2040.abstract.

[40] R.J. Kuppler, D.J. Timmons, Q.R. Fang, J.R. Li, T.A. Makal, M.D. Young, D. Yuan, D. Zhao, W. Zhuang, H.C. Zhou, Potential applications of metal-organic frameworks, Coord. Chem. Rev. 253 (2009) 3042–3066. doi:10.1016/j.ccr.2009.05.019.

[41] S. Kitagawa, S. Natarajan, Targeted Fabrication of MOFs for Hybrid Functionality (Eur. J. Inorg. Chem. 24/2010), Eur. J. Inorg. Chem. 2010 (2010) 3685–3685. doi:10.1002/ejic.201090071.

[42] D. Tanaka, K. Nakagawa, M. Higuchi, S. Horike, Y. Kubota, T.C. Kobayashi, M. Takata, S. Kitagawa, Kinetic Gate-Opening Process in a Flexible Porous Coordination Polymer, Angew. Chemie. 120 (2008) 3978–3982. doi:10.1002/ange.200705822.

[43] O.K. Farha, I. Eryazici, N.C. Jeong, B.G. Hauser, C.E. Wilmer, A.A. Sarjeant, R.Q. Snurr, S.T. Nguyen, A.Ö. Yazaydın, J.T. Hupp, Metal–Organic Framework Materials with Ultrahigh Surface Areas: Is the Sky the Limit?, J. Am. Chem. Soc. 134 (2012) 15016–15021. doi:10.1021/ja3055639.

[44] H. Furukawa, K.E. Cordova, M. O’Keeffe, O.M. Yaghi, The Chemistry and Applications of Metal-Organic Frameworks, Science (80-. ). 341 (2013). http://science.sciencemag.org/content/341/6149/1230444.abstract.

[45] A. Vishnyakov, P.I. Ravikovitch, A. V Neimark, M. Bülow, Q.M. Wang, Nanopore Structure and Sorption Properties of Cu−BTC Metal−Organic Framework, Nano Lett. 3 (2003) 713–718. doi:10.1021/nl0341281.

[46] S.K. Henninger, F.P. Schmidt, H.-M. Henning, Characterisation and improvement of sorption materials with molecular modeling for the use in heat transformation applications, Adsorption. 17 (2011) 833–843. doi:10.1007/s10450-011-9342-6.

[47] L. Grajciar, O. Bludský, P. Nachtigall, Water Adsorption on Coordinatively Unsaturated Sites in CuBTC MOF, J. Phys. Chem. Lett. 1 (2010) 3354–3359. doi:10.1021/jz101378z.

[48] P. Küsgens, M. Rose, I. Senkovska, H. Fröde, A. Henschel, S. Siegle, S. Kaskel, Characterization of metal-organic frameworks by water adsorption, Microporous Mesoporous Mater. 120 (2009) 325–330. doi:10.1016/J.MICROMESO.2008.11.020.

[49] K. Schlichte, T. Kratzke, S. Kaskel, Improved synthesis, thermal stability and catalytic properties of the metal-organic framework compound Cu3(BTC)2, Microporous Mesoporous Mater. 73 (2004) 81–88. doi:10.1016/J.MICROMESO.2003.12.027.

[50] J. Ehrenmann, S.K. Henninger, C. Janiak, Water Adsorption Characteristics of MIL-101 for Heat-Transformation Applications of MOFs, Eur. J. Inorg. Chem. 2011 (2011) 471–474. doi:10.1002/ejic.201001156.

[51] G. Akiyama, R. Matsuda, S. Kitagawa, Highly Porous and Stable Coordination Polymers as Water Sorption Materials, Chem. Lett. 39 (2010) 360–361. doi:10.1246/cl.2010.360.

[52] S. Bourrelly, B. Moulin, A. Rivera, G. Maurin, S. Devautour-Vinot, C. Serre, T. Devic, P. Horcajada, A. Vimont, G. Clet, M. Daturi, J.-C. Lavalley, S. Loera-Serna, R. Denoyel, P.L. Llewellyn, G. Férey, Explanation of the Adsorption of Polar Vapors in the Highly Flexible Metal Organic Framework MIL-53(Cr), J. Am. Chem. Soc. 132 (2010) 9488– 9498. doi:10.1021/ja1023282.

[53] D.S. Coombes, F. Corà, C. Mellot-Draznieks, R.G. Bell, Sorption-Induced Breathing in the Flexible Metal Organic Framework CrMIL-53: Force-Field Simulations and Electronic Structure Analysis, J. Phys. Chem. C. 113 (2009) 544–552. doi:10.1021/jp809408x.

[54] D. Fröhlich, E. Pantatosaki, P.D. Kolokathis, K. Markey, H. Reinsch, M. Baumgartner, M.A. van der Veen, D.E. De Vos, N. Stock, G.K. Papadopoulos, S.K. Henninger, C. Janiak, Water adsorption behaviour of CAU-10-H: a thorough investigation of its structure–property relationships, J. Mater. Chem. A. 4 (2016) 11859–11869. doi:10.1039/C6TA01757F.

[55] H.W.B. Teo, A. Chakraborty, Water Adsorption on Various Metal Organic Framework, IOP Conf. Ser. Mater. Sci. Eng. 272 (2017) 012019. doi:10.1088/1757- 899X/272/1/012019.

[56] B.B. Saha, A. Akisawa, T. Kashiwagi, Solar/waste heat driven two-stage adsorption chiller: The prototype, Renew. Energy. (2001). doi:10.1016/S0960-1481(00)00107-5.

[57] K. Kaneko, C. Ishii, M. Ruike, H. kuwabara, Origin of superhigh surface area and microcrystalline graphitic structures of activated carbons, Carbon N. Y. 30 (1992) 1075– 1088. doi:10.1016/0008-6223(92)90139-N.

[58] H.D. Do, D.D. Do, Effect of pore size distribution on the surface diffusivity in activated carbon: Hybrid Dubinin-Langmuir isotherm, Adsorption. (1995). doi:10.1007/BF00707352.

[59] J. Landers, G.Y. Gor, A. V. Neimark, Density functional theory methods for characterization of porous materials, Colloids Surfaces A Physicochem. Eng. Asp. 437 (2013) 3–32. doi:10.1016/j.colsurfa.2013.01.007.

[60] M. Naderi, Surface Area: Brunauer-Emmett-Teller (BET), in: Prog. Filtr. Sep., 2014. doi:10.1016/B978-0-12-384746-1.00014-8.

[61] Z.L. Wang, New Developments in Transmission Electron Microscopy for Nanotechnology, Adv. Mater. 15 (2003) 1497–1514. doi:10.1002/adma.200300384.

[62] W. Vanderlinde, Scanning Electron Microscopy, Scan. Electron Microsc. (2011). doi:10.1159/000265104.

[63] J.. Paredes, A. Martınez-Alonso, J.M.. Tascón, Application of scanning tunneling and atomic force microscopies to the characterization of microporous and mesoporous materials, Microporous Mesoporous Mater. 65 (2003) 93–126. doi:10.1016/j.micromeso.2003.07.001.

[64] F. Thielmann, Introduction into the characterisation of porous materials by inverse gas chromatography, J. Chromatogr. A. 1037 (2004) 115–123. doi:10.1016/j.chroma.2004.03.060.

[65] Inverse gas chromatography (IGC) as a tool for an energetic characterisation of porous materials, Microporous Mesoporous Mater. 209 (2015) 99–104. doi:10.1016/J.MICROMESO.2014.08.053.

[66] A. Pal, A. Kondor, S. Mitra, K. Thu, S. Harish, B.B. Saha, On surface energy and acid– base properties of highly porous parent and surface treated activated carbons using inverse gas chromatography, J. Ind. Eng. Chem. (2018). doi:10.1016/J.JIEC.2018.09.046.

[67] H. Grajek, J. Paciura-Zadrożna, Z. Witkiewicz, Chromatographic characterisation of ordered mesoporous silicas: Part I. Surface free energy of adsorption, J. Chromatogr. A. 1217 (2010) 3105–3115. doi:https://doi.org/10.1016/j.chroma.2010.02.028.

[68] O.M.M. Eltom, A.A.M. Sayigh, A simple method to enhance thermal conductivity of charcoal using some additives, Renew. Energy. 4 (1994) 113–118. doi:10.1016/0960- 1481(94)90072-8.

[69] T.-H. Eun, H.-K. Song, J.H. Han, K.-H. Lee, J.-N. Kim, Enhancement of heat and mass transfer in silica-expanded graphite composite blocks for adsorption heat pumps. Part II. Cooling system using the composite blocks, Int. J. Refrig. 23 (2000) 74–81. doi:10.1016/S0140-7007(99)00036-5.

[70] F. Jeremias, S.K. Henninger, C. Janiak, High performance metal-organic-framework coatings obtained via thermal gradient synthesis, Chem. Commun. 48 (2012) 9708– 9710. doi:10.1039/C2CC34782B.

[71] B.B. Saha, A. Chakraborty, S. Koyama, J.B. Lee, J. He, K.C. Ng, Adsorption characteristics of parent and copper-sputtered RD silica gels, Philos. Mag. (2007). doi:10.1080/14786430601032386.

[72] J.J. Guilleminot, A. Choisier, J.B. Chalfen, S. Nicolas, J.L. Reymoney, Heat transfer intensification in fixed bed adsorbers, Heat Recover. Syst. CHP. 13 (1993) 297–300. doi:10.1016/0890-4332(93)90052-W.

[73] A.A. Askalany, M. Salem, I.M. Ismael, A.H.H. Ali, M.G. Morsy, B.B. Saha, An overview on adsorption pairs for cooling, Renew. Sustain. Energy Rev. 19 (2013) 565–572. doi:10.1016/J.RSER.2012.11.037.

[74] M.M. Younes, I.I. El-Sharkawy, A.E. Kabeel, B.B. Saha, A review on adsorbent- adsorbate pairs for cooling applications, Appl. Therm. Eng. 114 (2017) 394–414. doi:10.1016/J.APPLTHERMALENG.2016.11.138.

[75] B.B. Saha, S. Jribi, S. Koyama, I.I. El-Sharkawy, Carbon Dioxide Adsorption Isotherms on Activated Carbons, J. Chem. Eng. Data. 56 (2011) 1974–1981. doi:10.1021/je100973t.

[76] H.-S. Kil, T. Kim, K. Hata, K. Ideta, T. Ohba, H. Kanoh, I. Mochida, S.-H. Yoon, J. Miyawaki, Influence of surface functionalities on ethanol adsorption characteristics in activated carbons for adsorption heat pumps, Appl. Therm. Eng. 72 (2014) 160–165. doi:10.1016/J.APPLTHERMALENG.2014.06.018.

[77] K.C. Ng, M. Burhan, M.W. Shahzad, A. Bin Ismail, A Universal Isotherm Model to Capture Adsorption Uptake and Energy Distribution of Porous Heterogeneous Surface, Sci. Rep. 7 (2017) 10634. doi:10.1038/s41598-017-11156-6.

[78] D.M. Ruthven, Principles of adsorption & adsorption processes, 1st ed., John Wiley & Sons, Inc., 1984.

[79] M. Thommes, K. Kaneko, A. V Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report), Pure Appl. Chem. 87 (2015) 1051–1069. doi:https://doi.org/10.1515/pac-2014-1117.

[80] G. Binning, C.F. Quate, Atomic Force Microscope, Phys. Rev. Lett. (1986). doi:10.1103/PhysRevLett.56.930.

[81] A. Ruf, M. Abraham, M. Lacher, K. Mayr, T. Zetterer, A Miniaturised Fabry Perot AFM Sensor, in: Solid-State Sensors Actuators, 1995 Eurosensors IX.. Transducers ’95. 8th Int. Conf., 1995: pp. 660–663. doi:10.1109/SENSOR.1995.717316.

[82] Z. Peng, P. West, Crystal sensor for microscopy applications, Appl. Phys. Lett. (2005). doi:10.1063/1.1846156.

[83] M.-S. Kim, J.-H. Choi, Y.-K. Park, J.-H. Kim, Atomic force microscope cantilever calibration device for quantified force metrology at micro- or nano-scale regime: the nano force calibrator (NFC), Metrologia. (2006). doi:10.1088/0026-1394/43/5/008.

[84] Y. Zhang, Y. Fang, X. Zhou, X. Dong, Image-based hysteresis modeling and compensation for an AFM piezo-scanner, Asian J. Control. (2009). doi:10.1002/asjc.92.

[85] Shimadzu, Scanning Probe Microscope SPM-9700 Hardware Instruction Manual, Kyoto, 2011.

[86] F. Marinello, P. Bariani, L. De Chiffre, E. Savio, Fast technique for AFM vertical drift compensation, Meas. Sci. Technol. 18 (2007) 689–696. doi:10.1088/0957- 0233/18/3/019.

[87] J.I. Paredes, A. Martínez-Alonso, P.X. Hou, T. Kyotani, J.M.D. Tascón, Imaging the structure and porosity of active carbons by scanning tunneling microscopy, Carbon N. Y. 44 (2006) 2469–2478. doi:10.1016/j.carbon.2006.04.040.

[88] D.-W. Kim, H.-S. Kil, K. Nakabayashi, S.-H. Yoon, J. Miyawaki, Structural elucidation of physical and chemical activation mechanisms based on the microdomain structure model, Carbon N. Y. 114 (2017) 98–105. doi:10.1016/j.carbon.2016.11.082.

[89] E. Papirer, E. Brendlé, H. Balard, J. Dentzer, Variation of the surface properties of nickel oxide upon heat treatment evidenced by temperature programmed desorption and inverse gas chromatography studies, J. Mater. Sci. 35 (2000) 3573–3577. doi:10.1023/A:1004813629876.

[90] L.J. Jallo, Y. Chen, J. Bowen, F. Etzler, R. Dave, Prediction of Inter-particle Adhesion Force from Surface Energy and Surface Roughness, J. Adhes. Sci. Technol. 25 (2011) 367–384. doi:10.1163/016942410X525623.

[91] O. Planinšek, J. Zadnik, Š. Rozman, M. Kunaver, R. Dreu, S. Srčič, Influence of inverse gas chromatography measurement conditions on surface energy parameters of lactose monohydrate, Int. J. Pharm. 256 (2003) 17–23. doi:https://doi.org/10.1016/S0378-5173(03)00058-9.

[92] J. Stapley, G. Buckton, D. Merrifield, Investigation to find a suitable reference material for use as an inverse gas chromatography system suitability test, Int. J. Pharm. 318 (2006) 22–27. doi:https://doi.org/10.1016/j.ijpharm.2006.03.011.

[93] A. Voelkel, Chapter 20 - Physicochemical Measurements (Inverse Gas Chromatography), in: C.F.B.T.-G.C. Poole (Ed.), Elsevier, Amsterdam, 2012: pp. 477–494. doi:https://doi.org/10.1016/B978-0-12-385540-4.00020-1.

[94] H.E. Newell, G. Buckton, D.A. Butler, F. Thielmann, D.R. Williams, The Use of Inverse Phase Gas Chromatography to Measure the Surface Energy of Crystalline, Amorphous, and Recently Milled Lactose, Pharm. Res. 18 (2001) 662–666. doi:10.1023/A:1011089511959.

[95] W. Wang, Q. Hua, Y. Sha, D. Wu, S. Zheng, B. Liu, Surface properties of solid materials measured by modified inverse gas chromatography, Talanta. 112 (2013) 69–72. doi:https://doi.org/10.1016/j.talanta.2013.03.040.

[96] F. Thielmann, D.A. Butler, D.R. Williams, E. Baumgarten, Characterisation of microporous materials by dynamic sorption methods, in: A. Sayari, M.B.T.-S. in S.S. and C. Jaroniec (Eds.), Nanoporous Mater. II, Elsevier, 2000: pp. 633–638. doi:https://doi.org/10.1016/S0167-2991(00)80266-9.

[97] P.P. Ylä-Mäihäniemi, J.Y.Y. Heng, F. Thielmann, D.R. Williams, Inverse gas chromatographic method for measuring the dispersive surface energy distribution for particulates, Langmuir. 24 (2008) 9551–9557. doi:10.1021/la801676n.

[98] P. Mukhopadhyay, H.P. Schreiber, Aspects of acid-base interactions and use of inverse gas chromatography, Colloids Surfaces A Physicochem. Eng. Asp. 100 (1995) 47–71. doi:https://doi.org/10.1016/0927-7757(95)03137-3.

[99] J. Jagiełło, G. Ligner, E. Papirer, Characterization of silicas by inverse gas chromatography at finite concentration: Determination of the adsorption energy distribution function, J. Colloid Interface Sci. 137 (1990) 128–136. doi:https://doi.org/10.1016/0021-9797(90)90049-T.

[100] E. Cremer, H. Huber, Measurement of adsorption isotherms by means of high temperature elution gas chromatography, in: Proc. Int. Symp. Gas Chromatogr., 1962: p. 169.

[101] E. Cremer, H. Huber, Messung von Adsorptionsisothermen an Katalysatoren bei hohen Temperaturen mit Hilfe der Gas-Festkörper-Eluierungschromatographie, Angew. Chemie. 73 (1961) 461–465. doi:10.1002/ange.19610731303.

[102] T.I. Bakaeva, C.G. Pantano, C.E. Loope, V.A. Bakaev, Heterogeneity of the Glass Fiber Surface from Inverse Gas Chromatography, J. Phys. Chem. B. 104 (2000) 8518–8526. doi:10.1021/jp0013457.

[103] S. Xie, X. He, Y. Yang, Effects on growth and feed utilization of Chinese longsnout catfish Leiocassis longirostris Günther of replacement of dietary fishmeal by soybean cake, Aquac. Nutr. 4 (1998) 187–192. doi:10.1046/j.1365-2095.1998.00069.x.

[104] B. Voigtlander, NanoScience and Technology, Springer-Verlag, 2015. doi:10.1007/978- 3-662-45240-0_14.

[105] Gwyddion [Computer Software]. 2017 Retrieved from http://gwyddion.net/, (n.d.).

[106] T. Vuong, P.A. Monson, Surface Roughness Effects in Molecular Models of Adsorption in Heterogeneous Porous Solids, Langmuir. 14 (1998) 4880–4886. doi:10.1021/la980033g.

[107] B. Sun, A. Chakraborty, Thermodynamic formalism of water uptakes on solid porous adsorbents for adsorption cooling applications, Appl. Phys. Lett. 104 (2014) 201901. doi:10.1063/1.4876922.

[108] Rafael C. Gonzalez, Richard E. Woods, Digital Image Processing, 2002. doi:10.1017/CBO9781107415324.004.

[109] P. Klapetek, I. Ohlidal, D. Franta, A. Montaigne-Ramil, A. Bonanni, D. Stifter, H. Sitter, Atomic force microscopy characterization of ZnTe epitaxial films, Acta Phys. Slovaca. 53 (2003) 223–230. doi:10.1143/JJAP.42.4706.

[110] H.T. Chua, K.C. Ng, A. Chakraborty, N.M. Oo, M.A. Othman, Adsorption Characteristics of Silica Gel + Water Systems, J. Chem. Eng. Data. 47 (2002) 1177– 1181. doi:10.1021/je0255067.

[111] D.C. Wang, Z.Z. Xia, J.Y. Wu, R.Z. Wang, H. Zhai, W.D. Dou, Study of a novel silica gel–water adsorption chiller. Part I. Design and performance prediction, Int. J. Refrig. 28 (2005) 1073–1083. doi:10.1016/J.IJREFRIG.2005.03.001.

[112] B. Choudhury, B.B. Saha, P.K. Chatterjee, J.P. Sarkar, An overview of developments in adsorption refrigeration systems towards a sustainable way of cooling, Appl. Energy. 104 (2013) 554–567. doi:10.1016/J.APENERGY.2012.11.042.

[113] A. SAKODA, M. SUZUKI, FUNDAMENTAL STUDY ON SOLAR POWERED ADSORPTION COOLING SYSTEM, J. Chem. Eng. Japan. 17 (1984) 52–57. doi:10.1252/jcej.17.52.

[114] K. CHIHARA, M. SUZUKI, AIR DRYING BY PRESSURE SWING ADSORPTION, J. Chem. Eng. Japan. 16 (1983) 293–299. doi:10.1252/jcej.16.293.

[115] A. Myat, K. Thu, N.K. Choon, The experimental investigation on the performance of a low temperature waste heat-driven multi-bed desiccant dehumidifier (MBDD) and minimization of entropy generation, Appl. Therm. Eng. 39 (2012) 70–77. doi:https://doi.org/10.1016/j.applthermaleng.2012.01.041.

[116] S. Mitra, P. Kumar, K. Srinivasan, P. Dutta, Development and performance studies of an air cooled two-stage multi-bed silica-gel + water adsorption system, Int. J. Refrig. 67 (2016) 174–189. doi:https://doi.org/10.1016/j.ijrefrig.2015.10.028.

[117] K.C. Ng, K. Thu, Y. Kim, A. Chakraborty, G. Amy, Adsorption desalination: An emerging low-cost thermal desalination method, Desalination. 308 (2013) 161–179. doi:https://doi.org/10.1016/j.desal.2012.07.030.

[118] K. Thu, K.C. Ng, B.B. Saha, A. Chakraborty, S. Koyama, Operational strategy of adsorption desalination systems, Int. J. Heat Mass Transf. 52 (2009) 1811–1816. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2008.10.012.

[119] S. Mokhatab, W.A. Poe, J.Y. Mak, Chapter 9 - Natural Gas Dehydration and Mercaptans Removal, in: S. Mokhatab, W.A. Poe, J.Y.B.T.-H. of N.G.T. and P. (Fourth E. Mak (Eds.), Gulf Professional Publishing, 2019: pp. 307–348. doi:https://doi.org/10.1016/B978-0-12-815817-3.00009-5.

[120] H.F. Qureshi, R. Besselink, J.E. ten Elshof, A. Nijmeijer, L. Winnubst, Doped microporous hybrid silica membranes for gas separation, J. Sol-Gel Sci. Technol. 75 (2015) 180–188. doi:10.1007/s10971-015-3687-3.

[121] K. Benzarti, C. Perruchot, M.M. Chehimi, Surface energetics of cementitious materials and their wettability by an epoxy adhesive, Colloids Surfaces A Physicochem. Eng. Asp. 286 (2006) 78–91. doi:https://doi.org/10.1016/j.colsurfa.2006.03.007.

[122] W. Fan, A. Chakraborty, Isosteric heat of adsorption at zero coverage for AQSOA- Z01/Z02/Z05 zeolites and water systems, Microporous Mesoporous Mater. 260 (2018) 201–207. doi:10.1016/j.micromeso.2017.10.039.

[123] A. Chakraborty, K.C. Leong, K. Thu, B.B. Saha, K.C. Ng, Theoretical insight of adsorption cooling, Appl. Phys. Lett. 98 (2011) 221910. doi:10.1063/1.3592260.

[124] Y.I. Aristov, Challenging offers of material science for adsorption heat transformation: A review, Appl. Therm. Eng. 50 (2013) 1610–1618. doi:10.1016/J.APPLTHERMALENG.2011.09.003.

[125] F. Thielmann, S. Reutenauer, G. Fowler, Determination of Energy Parameters of Highly Microporous Activated Carbons by Inverse Gas Chromatography, n.d.

[126] A. Voelkel, Chapter 2.5 Inverse gas chromatography in the examination of acid-base and some other properties of solid materials, in: A. Dąbrowski, V.A.B.T.-S. in S.S. and C. Tertykh (Eds.), Adsorpt. New Modif. Inorg. Sorbents, Elsevier, 1996: pp. 465–477. doi:https://doi.org/10.1016/S0167-2991(06)81031-1.

[127] M. Rückriem, D. Enke, T. Hahn, Inverse gas chromatography (IGC) as a tool for an energetic characterisation of porous materials, Microporous Mesoporous Mater. 209 (2015) 99–104. doi:10.1016/J.MICROMESO.2014.08.053.

[128] A. Legras, A. Kondor, M. Alcock, M.T. Heitzmann, R.W. Truss, Inverse gas chromatography for natural fibre characterisation: dispersive and acid-base distribution profiles of the surface energy, Cellulose. 24 (2017) 4691–4700. doi:10.1007/s10570- 017-1443-2.

[129] H. Balard, E. Brendle, E. Papirer, Determination of the acid-base properties of solid surfaces using inverse gas chromatography: Advantages and limitations, Acid-Base Interact. Relev. to Adhes. Sci. Technol. 2 (2000) 299–316.

[130] F.M. Fowkes, ATTRACTIVE FORCES AT INTERFACES, Ind. Eng. Chem. 56 (1964) 40–52. doi:10.1021/ie50660a008.

[131] J. Schultz, L. Lavielle, C. Martin, The Role of the Interface in Carbon Fibre-Epoxy Composites, J. Adhes. 23 (1987) 45–60. doi:10.1080/00218468708080469.

[132] G.M. Dorris, D.G. Gray, Adsorption of n-alkanes at zero surface coverage on cellulose paper and wood fibers, J. Colloid Interface Sci. 77 (1980) 353–362. doi:https://doi.org/10.1016/0021-9797(80)90304-5.

[133] D.K. Owens, R.C. Wendt, Estimation of the surface free energy of polymers, J. Appl. Polym. Sci. 13 (1969) 1741–1747.

[134] C. Della Volpe, D. Maniglio, S. Siboni, M. Morra, Recent theoretical and experimental advancements in the application of van Oss–Chaudury–Good acid–base theory to the analysis of polymer surfaces I. General aspects, J. Adhes. Sci. Technol. 17 (2003) 1477– 1505. doi:10.1163/156856103769207365.

[135] C.D. Volpe, S. Siboni, Some Reflections on Acid–Base Solid Surface Free Energy Theories, J. Colloid Interface Sci. 195 (1997) 121–136. doi:https://doi.org/10.1006/jcis.1997.5124.

[136] S. Dong, M. Brendlé, J.B. Donnet, Study of solid surface polarity by inverse gas chromatography at infinite dilution, Chromatographia. 28 (1989) 469–472. doi:10.1007/BF02261062.

[137] M.A. Islam, A. Pal, B.B. Saha, Experimental study on thermophysical and porous properties of silica gels, Int. J. Refrig. 110 (2020) 277–285. doi:10.1016/j.ijrefrig.2019.10.027.

[138] A. Kondor, C. Quellet, A. Dallos, Surface characterization of standard cotton fibres and determination of adsorption isotherms of fragrances by IGC, Surf. Interface Anal. 47 (2015) 1040–1050. doi:10.1002/sia.5811.

[139] B. Shi, Y. Wang, L. Jia, Comparison of Dorris–Gray and Schultz methods for the calculation of surface dispersive free energy by inverse gas chromatography, J. Chromatogr. A. 1218 (2011) 860–862. doi:https://doi.org/10.1016/j.chroma.2010.12.050.

[140] M. Rückriem, A. Inayat, D. Enke, R. Gläser, W.-D. Einicke, R. Rockmann, Inverse gas chromatography for determining the dispersive surface energy of porous silica, Colloids Surfaces A Physicochem. Eng. Asp. 357 (2010) 21–26. doi:10.1016/J.COLSURFA.2009.12.001.

[141] A. Chakraborty, B.B. Saha, S. Koyama, K.C. Ng, On the thermodynamic modeling of the isosteric heat of adsorption and comparison with experiments, Appl. Phys. Lett. 89 (2006) 171901. doi:10.1063/1.2360925.

[142] L. Prasetyo, D.D. Do, D. Nicholson, A coherent definition of Henry constant and isosteric heat at zero loading for adsorption in solids – An absolute accessible volume, Chem. Eng. J. 334 (2018) 143–152. doi:10.1016/j.cej.2017.10.022.

[143] B.B. Saha, A. Chakraborty, S. Koyama, K. Srinivasan, K.C. Ng, T. Kashiwagi, P. Dutta, Thermodynamic formalism of minimum heat source temperature for driving advanced adsorption cooling device, Appl. Phys. Lett. 91 (2007) 111902. doi:10.1063/1.2780117.

[144] A.K. Meena, G.K. Mishra, P.K. Rai, C. Rajagopal, P.N. Nagar, Removal of heavy metal ions from aqueous solutions using carbon aerogel as an adsorbent, J. Hazard. Mater. 122 (2005) 161–170. doi:https://doi.org/10.1016/j.jhazmat.2005.03.024.

[145] L. Deschênes, J. Lyklema, C. Danis, F. Saint-Germain, Phase transitions in polymer monolayers: Application of the Clapeyron equation to PEO in PPO–PEO Langmuir films, Adv. Colloid Interface Sci. 222 (2015) 199–214. doi:https://doi.org/10.1016/j.cis.2014.11.002.

[146] P.J. Dauenhauer, O.A. Abdelrahman, A Universal Descriptor for the Entropy of Adsorbed Molecules in Confined Spaces, ACS Cent. Sci. 4 (2018) 1235–1243. doi:10.1021/acscentsci.8b00419.

[147] R.K. Agarwal, K.A.G. Amankwah, J.A. Schwarz, Analysis of adsorption entropies of high pressure gas adsorption data on activated carbon, Carbon N. Y. 28 (1990) 169–174. doi:10.1016/0008-6223(90)90110-K.

[148] A. Pal, K. Thu, S. Mitra, I.I. El-Sharkawy, B.B. Saha, H.-S. Kil, S.-H. Yoon, J. Miyawaki, Study on biomass derived activated carbons for adsorptive heat pump application, Int. J. Heat Mass Transf. 110 (2017) 7–19. doi:https://doi.org/10.1016/j.ijheatmasstransfer.2017.02.081.

[149] T. Smith, Effect of Surface Coverage and Temperature on the Sticking Coefficient, J. Chem. Phys. 40 (1964) 1805–1812. doi:10.1063/1.1725409.

[150] A. Chakraborty, B.B. Saha, K.C. Ng, S. Koyama, K. Srinivasan, Theoretical Insight of Physical Adsorption for a Single-Component Adsorbent + Adsorbate System: I. Thermodynamic Property Surfaces, Langmuir. 25 (2009) 2204–2211. doi:10.1021/la803289p.

[151] S. Sircar, R. Mohr, C. Ristic, M.B. Rao, Isosteric Heat of Adsorption: Theory and Experiment, J. Phys. Chem. B. 103 (1999) 6539–6546. doi:10.1021/jp9903817.

[152] K. Uddin, I.I. El-Sharkawy, T. Miyazaki, S. Koyama, H.-S. Kil, J. Miyawaki, S.-H. Yoon, Adsorption characteristics of ethanol onto functional activated carbons with controlled oxygen content, Appl. Therm. Eng. 72 (2014) 211–218. doi:10.1016/J.APPLTHERMALENG.2014.03.062.

[153] M. Sivak, Potential energy demand for cooling in the 50 largest metropolitan areas of the world: Implications for developing countries, Energy Policy. 37 (2009) 1382–1384. doi:https://doi.org/10.1016/j.enpol.2008.11.031.

[154] K.-H. Kim, Z.-H. Shon, H.T. Nguyen, E.-C. Jeon, A review of major chlorofluorocarbons and their halocarbon alternatives in the air, Atmos. Environ. 45 (2011) 1369–1382. doi:https://doi.org/10.1016/j.atmosenv.2010.12.029.

[155] B.B. Saha, K.C. Ng, Advances in adsorption technology, Nova Science Publishers, 2010. http://hdl.handle.net/2324/1001434433 (accessed January 22, 2018).

[156] K.C. Ng, H.T. Chua, C.Y. Chung, C.H. Loke, T. Kashiwagi, A. Akisawa, B.B. Saha, Experimental investigation of the silica gel–water adsorption isotherm characteristics, Appl. Therm. Eng. 21 (2001) 1631–1642. doi:10.1016/S1359-4311(01)00039-4.

[157] S. Kayal, S. Baichuan, B.B. Saha, Adsorption characteristics of AQSOA zeolites and water for adsorption chillers, Int. J. Heat Mass Transf. 92 (2016) 1120–1127. doi:10.1016/J.IJHEATMASSTRANSFER.2015.09.060.

[158] J. Sahu, A. Aijaz, Q. Xu, P.K. Bharadwaj, A three-dimensional pillared-layer metal- organic framework: Synthesis, structure and gas adsorption studies, Inorganica Chim. Acta. 430 (2015) 193–198. doi:https://doi.org/10.1016/j.ica.2015.03.011.

[159] N.C. Burtch, H. Jasuja, K.S. Walton, Water Stability and Adsorption in Metal–Organic Frameworks, Chem. Rev. 114 (2014) 10575–10612. doi:10.1021/cr5002589.

[160] N. Tannert, S.-J. Ernst, C. Jansen, H.-J. Bart, S.K. Henninger, C. Janiak, Evaluation of the highly stable metal–organic framework MIL-53(Al)-TDC (TDC = 2,5- thiophenedicarboxylate) as a new and promising adsorbent for heat transformation applications, J. Mater. Chem. A. 6 (2018) 17706–17712. doi:10.1039/C8TA04407D.

[161] H.W.B. Teo, A. Chakraborty, S. Kayal, Post synthetic modification of MIL-101(Cr) for S-shaped isotherms and fast kinetics with water adsorption, Appl. Therm. Eng. 120 (2017) 453–462. doi:10.1016/J.APPLTHERMALENG.2017.04.018.

[162] M. Wickenheisser, F. Jeremias, S.K. Henninger, C. Janiak, Grafting of hydrophilic ethylene glycols or ethylenediamine on coordinatively unsaturated metal sites in MIL- 100(Cr) for improved water adsorption characteristics, Inorganica Chim. Acta. 407 (2013) 145–152. doi:https://doi.org/10.1016/j.ica.2013.07.024.

[163] C.T. Lollar, J.-S. Qin, J. Pang, S. Yuan, B. Becker, H.-C. Zhou, Interior Decoration of Stable Metal–Organic Frameworks, Langmuir. 34 (2018) 13795–13807. doi:10.1021/acs.langmuir.8b00823.

[164] F. Jeremias, D. Frohlich, C. Janiak, S.K. Henninger, Water and methanol adsorption on MOFs for cycling heat transformation processes, New J. Chem. 38 (2014) 1846–1852. doi:10.1039/C3NJ01556D.

[165] N. Tannert, C. Jansen, S. Nießing, C. Janiak, Robust synthesis routes and porosity of the Al-based metal–organic frameworks Al-fumarate, CAU-10-H and MIL-160, Dalt. Trans. 48 (2019) 2967–2976. doi:10.1039/C8DT04688C.

[166] L. Emi, M. Ulrich, T. Natalia, M. Hendrick, C. Gerhard, B. Stefan, Process for preparing porous metal-organic frameworks based on aluminium fumarate, US 2012/0082864 A1, 2012.

[167] F. Jeremias, D. Fröhlich, C. Janiak, S.K. Henninger, Advancement of sorption-based heat transformation by a metal coating of highly-stable, hydrophilic aluminium fumarate MOF, RSC Adv. 4 (2014) 24073–24082. doi:10.1039/C4RA03794D.

[168] S. Kayal, A. Chakraborty, H.W.B. Teo, Green synthesis and characterization of aluminium fumarate metal-organic framework for heat transformation applications, Mater. Lett. 221 (2018) 165–167. doi:https://doi.org/10.1016/j.matlet.2018.03.099.

[169] J.R. Karra, K.S. Walton, Effect of Open Metal Sites on Adsorption of Polar and Nonpolar Molecules in Metal−Organic Framework Cu-BTC, Langmuir. 24 (2008) 8620–8626. doi:10.1021/la800803w.

[170] K.A. Cychosz, M. Thommes, Progress in the Physisorption Characterization of Nanoporous Gas Storage Materials, Engineering. 4 (2018) 559–566. doi:https://doi.org/10.1016/j.eng.2018.06.001.

[171] F.H.M. Azahar, S. Mitra, A. Yabushita, A. Harata, B.B. Saha, K. Thu, Improved model for the isosteric heat of adsorption and impacts on the performance of heat pump cycles, Appl. Therm. Eng. 143 (2018) 688–700. doi:https://doi.org/10.1016/j.applthermaleng.2018.07.131.

[172] M. V Solovyeva, L.G. Gordeeva, Y.I. Aristov, “MIL-101(Cr)–methanol” as working pair for adsorption heat transformation cycles: Adsorbent shaping, adsorption equilibrium and dynamics, Energy Convers. Manag. 182 (2019) 299–306. doi:https://doi.org/10.1016/j.enconman.2018.12.065.

[173] J. Canivet, A. Fateeva, Y. Guo, B. Coasne, D. Farrusseng, Water adsorption in MOFs: fundamentals and applications, Chem. Soc. Rev. 43 (2014) 5594–5617. doi:10.1039/C4CS00078A.

[174] R. Ho, J.Y.Y. Heng, A review of inverse gas chromatography and its development as a tool to characterize anisotropic surface properties of pharmaceutical solids, KONA Powder Part. J. 30 (2012) 164–180. doi:10.14356/kona.2013016.

[175] A. Legras, A. Kondor, M.T. Heitzmann, R.W. Truss, Inverse gas chromatography for natural fibre characterisation: Identification of the critical parameters to determine the Brunauer–Emmett–Teller specific surface area, J. Chromatogr. A. 1425 (2015) 273–279. doi:https://doi.org/10.1016/j.chroma.2015.11.033.

[176] S.M.S. Ltd., Determination of the Surface Energy of Nanomaterials Using Inverse Gas Chromatography, AZoNano. (2019). https://www.azonano.com/article.aspx?ArticleID=2609. (accessed May 5, 2020).

参考文献をもっと見る