リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Connectivity Maintenance for Robotic Swarms by Distributed Role Allocation Algorithm」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Connectivity Maintenance for Robotic Swarms by Distributed Role Allocation Algorithm

Kobayashi Kazuho Higuchi Takehiro 20403652 Ueno Seiya 60203460 横浜国立大学

2022.01

概要

Swarm robotics requires a practical scheme to maintain supervision by human operators or managers, especially in complicated or life-threatening situations. For this purpose, this paper proposes an algorithm to maintain connectivity between robot swarm and fixed base station during missions. The main idea of the algorithm is maintaining connectivity by role allocation and switching among robots without centralized control by the base station. Our simulation studies have shown no significant inequality of computational cost among robots over the emulated patrol missions. Furthermore, as the total number of robots in the swarm increase, computational cost per robot does not increase significantly. These results have shown the distributed nature and scalability of the proposed algorithms.

この論文で使われている画像

参考文献

[1]

E. Sahin, Swarm Robotics: From Sources of

Inspiration to Domains of Application, Swarm

Robotics, pp. 10–20, 2005.

[2] M. Schranz, M. Umlauft, M. Sende, et al., Swarm

Robotic Behaviors and Current Applications,

Frontiers in Robotics and AI, vol. 7, no. 36, 2020.

[3] D. Carrillo-Zapata, E. Milner, J. Hird, et al., Mutual

Shaping in Swarm Robotics: User Studies in Fire

and Rescue, Storage Organization, and Bridge

Inspection, Frontiers in Robotics and AI, vol. 7, no.

53, 2020.

[4] F. Amigoni, J. Banfi, and N. Basilico, Multirobot

Exploration of Communication-Restricted

Environments: A Survey, IEEE Intelligent Systems,

vol. 32, no. 6, pp. 48–57, 2017.

[5] J. Banfi, A. Quattrini Li, I. Rekleitis, et al.,

Strategies for coordinated multirobot exploration

with recurrent connectivity constraints, Autonomous

Robots, vol. 42, no. 4, pp. 875–894, 2018.

[6] G. A. Hollinger and S. Singh, Multirobot

Coordination With Periodic Connectivity: Theory

and Experiments, IEEE Transactions on Robotics,

vol. 28, no. 4, pp. 967–973, 2012.

[7] J. De Hoog, S. Cameron, and A. Visser,

Autonomous multi-robot exploration in

communication-limited environments, Proceedings

of the Conference on Towards Autonomous Robotic

Systems, pp. 68–75, 2010.

[8] E. Stump, N. Michael, V. Kumar, et al., Visibilitybased deployment of robot formations for

communication maintenance, 2011 IEEE

International Conference on Robotics and

Automation, pp. 4498–4505, 2011.

[9] Y. Pei, M. W. Mutka, and N. Xi, Connectivity and

bandwidth‐aware real‐time exploration in mobile

robot networks, Wireless Communications and

Mobile Computing, vol. 13, no. 9, pp. 847–863,

2013.

[10] R. C. Arkin and J. Diaz, Line-of-sight constrained

exploration for reactive multiagent robotic teams,

7th International Workshop on Advanced Motion

Control. Proceedings (Cat. No.02TH8623), pp. 455–

461, 2002.

[11] P. Mukhija, R. Sawhney, and K. M. Krishna, Multi

Robotic Exploration with Communication

Requirement to a Fixed Base Station, Proceedings of

the 9th International Conference on Autonomous

Agents and Multiagent Systems: Volume 1 Volume 1, pp. 1515–1516, 2010.

[12] P. Mukhija, K. M. Krishna, and V. Krishna, A two

phase recursive tree propagation based multi-robotic

exploration framework with fixed base station

constraint, 2010 IEEE/RSJ International Conference

on Intelligent Robots and Systems, pp. 4806–4811,

2010.

[13] T. Nestmeyer, P. Robuffo Giordano, H. H. Bülthoff,

et al., Decentralized simultaneous multi-target

exploration using a connected network of multiple

robots, Autonomous Robots, vol. 41, no. 4, pp. 989–

1011, 2017.

[14] J. Banfi, A. Q. Li, N. Basilico, et al.,

Communication-constrained multirobot exploration:

Short taxonomy and comparative results,

Proceedings of the IROS workshop on on-line

decision-making in multi-robot coordination

(DEMUR2015), pp. 1–8, 2015.

[15] E. Tuci, M. H. M. Alkilabi, and O. Akanyeti,

Cooperative object transport in multi-robot systems:

A review of the state-of-the-art, Frontiers in

Robotics and AI, vol. 5, no. 59, 2018.

[16] C. W. Reynolds, Flocks, Herds and Schools: A

Distributed Behavioral Model, Proceedings of the

14th annual conference on Computer graphics and

interactive techniques, pp. 25–34, 1987.

[17] B. Shucker and J. K. Bennett, Virtual Spring Mesh

Algorithms for Control of Distributed Robotic

Macrosensors, University of Colorado at Bulder,

Technical Report CU-CS-996-05, no. 930, 2005.

[18] K. R. Gabriel and R. R. Sokal, A New Statistical

Approach to Geographic Variation Analysis,

Systematic Biology, vol. 18, no. 3, pp. 259–278,

1969.

[19] M. N. Rooker and A. Birk, Multi-robot exploration

under the constraints of wireless networking,

Control Engineering Practice, vol. 15, no. 4, pp.

435–445, 2007.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る