リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Quantitative elucidation of the transfer of the neonicotinoid pesticide clothianidin to the breast milk in mice」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Quantitative elucidation of the transfer of the neonicotinoid pesticide clothianidin to the breast milk in mice

Shoda, Asuka Nishi, Misaki Murata, Midori Mantani, Youhei Yokoyama, Toshifumi Hirano, Tetsushi Ikenaka, Yoshinori Hoshi, Nobuhiko 神戸大学

2023.01.15

概要

Neonicotinoid pesticides (NNs) have been reported to have neurobehavioral effects on offspring after fetal and lactational exposure. In this study, clothianidin (CLO), an NN, was administered orally as a single dose (6.5 mg/kg: 1/10 of the no-observed-adverse-effect level in the current Pesticide Evaluation Report) to 10-day post-partum ICR mice, and CLO and its metabolites desmethyl-CLO (dm-CLO) were quantified using liquid chromatography-electrospray ionization/tandem mass spectrometry (LC-ESI/MS/MS) after collecting maternal breast milk and blood samples over time (1, 3, 6, 9, 12, and 24 h after administration). CLO and dm-CLO were detected in the breast milk at 1 h after the administration, and their concentrations were significantly higher than those in blood at all time points. The concentrations of CLO and dm-CLO in the breast milk were at their highest levels at 1 and 3 h, respectively, and then decreased over time to become almost undetectable at 24 h after the administration. These results show that CLO is metabolized in the mother’s body and is rapidly transferred to and concentrated in the breast milk. Since CLO concentrations in breast milk are higher than those in the blood, there is concern about the effects of CLO during lactation.

この論文で使われている画像

参考文献

Baskerville, T.A. and Douglas, A.J., 2008. Interactions between dopamine and oxytocin in the control

of sexual behaviour. Prog. Brain Res. 170, 277–290.

Ballou, L.U., Bleck, J.L., Bleck, G.T., Bremel, R.D., 1993. The effects of daily oxytocin injections

before and after milking on milk production, milk plasmin, and milk composition. J. Dairy Sci. 76,

1544–1549.

Bass, C., Denholm, I., Williamson, M.S., Nauen, R., 2015. The global status of insect resistance to

neonicotinoid insecticides. Pestic. Biochem. Physiol. 121, 78–87.

Cartereau, A., Martin, C., Thany, S.H., 2018. Neonicotinoid insecticides differently modulate

acetycholine-induced currents on mammalian α7 nicotinic acetylcholine receptors. Br. J.

Pharmacol. 175, 1987–1998.

Charnley, G., Putzrath, R.M., 2001. Children's health, susceptibility, and regulatory approaches to

reducing risks from chemical carcinogens. Environ. Health Perspect. 109, 187–192.

Chen, D., Liu, Z., Barrett, H., Han, J., Lv, B., Li, Y., Li, J., Zhao, Y., Wu, Y., 2020. Nationwide

biomonitoring of neonicotinoid insecticides in breast milk and health risk assessment to nursing

infants in the Chinese population. J. Agric. Food Chem. 68, 13906–13915.

Food and Agriculture Organization of the United Nations 2016. FAO Specifications and Evaluations for

Agricultural Pesticide Clothianidin. http://www.fao.org/3/ca7726en/ca7726en.pdf (accessed 19

February 2022).

Ford, K.A., Casida, J.E., 2006. Unique and common metabolites of thiamethoxam, clothianidin, and

dinotefuran in mice. Chem. Res. Toxicol. 19, 1549–1556.

Gill, R.J., Ramos-Rodriguez, O., Raine, N.E., 2012. Combined pesticide exposure severely affects

individual-and colony-level traits in bees. Nature 491, 105–108.

Hanrahan, J.P., Eisen, E.J., 1970. A lactation curve for mice. Lab Anim Care. 20, 101–104.

Henry, M., Henry, M., Béguin, M., Requier, F., Rollin, O., Odoux, J.F., Aupinel, P., Aptel, J.,

Tchamitchian, S., Decourtye, A., 2012. A common pesticide decreases foraging success and

survival in honey bees. Science 336, 348–350.

Hirai, A., Sugio, S., Nimako, C., Nakayama, S.M.M., Kato, K., Takahashi, K., Arizonom, K., Hiranom

T., Hoshi, N., Fujioka, K., Taira, K., Ishizuka, M., Wake, H., Ikenaka, Y., 2022. Ca2+ imaging with

two-photon microscopy to detect the disruption of brain function in mice administered

neonicotinoid insecticides. Sci. Rep. 12, 5114.

Hirano, T., Miyata, Y., Kubo, S., Ohno, S., Onaru, K., Maeda, M., Kitauchi, S., Nishi, M., Tabuchi, Y.,

Ikenaka, Y., Ichise, T., Nakayama, S.M.M., Ishizuka, M., Arizono, K., Takahashi, K., Kato, K.,

Mantani, Y., Yokoyama, T., Hoshi, N., 2021. Aging-related changes in the sensitivity of behavioral

effects of the neonicotinoid pesticide clothianidin in male mice. Toxicol Lett. 342, 95-103.

Hirano, T., Yanai, S., Omotehara, T., Hashimoto, R., Umemura, Y., Kubota, N., Minami, K., Nagahara,

D., Matsuo, E., Aihara, Y., Shinohara, R., Furuyashiki, T., Mantani, Y., Yokoyama, T., Kitagawa,

H., Hoshi, N., 2015. The combined effect of clothianidin and environmental stress on the behavioral

and reproductive function in male mice. J. Vet. Med. Sci. 77, 1207–1215.

Hirano, T., Yanai, S., Takada, T., Yoneda, N., Omotehara, T., Kubota, N., Minami, K., Yamamoto, A.,

Mantani, Y., Yokoyama, T., Kitagawa, H., Hoshi, N., 2018. NOAEL-dose of a neonicotinoid

pesticide, clothianidin, acutely induce anxiety-related behavior with human-audible vocalizations

in male mice in a novel environment. Toxicol. Lett. 282, 57–63.

14

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

Hoshi, N., 2021. Adverse effects of pesticides on regional biodiversity and their mechanisms. In:

Matsuda, T., Wolff, J., Yanagawa, T., (Eds), Risks and Regulation of New Technologies. Springer,

Singapore, pp. 235–247.

Hoshi, N., Hirano, T., Omotehara, T., Tokumoto, J., Umemura, Y., Mantani, Y., Tanida, T., Warita, K.,

Tabuchi, Y., Yokoyama, T., Kitagawa, H., 2014. Insight into the mechanism of reproductive

dysfunction caused by neonicotinoid pesticides. Biol. Pharm. Bull. 37, 1439–1443.

Ichikawa, G., Kuribayashi, R., Ikenaka, Y., Ichise, T., Nakayama, S.M.M., Ishizuka, M., Taira, K.,

Fujioka, K., Sairenchi, T., Kobayashi, G., Bonmatin, J.M., Yoshihara, S., 2019. LC-ESI/MS/MS

analysis of neonicotinoids in urine of very low birth weight infants at birth. PLoS One. 14,

e0219208.

Ikenaka, Y., Miyabara, Y., Ichise, T., Nakayama, S., Nimako, C., Ishizuka, M., Tohyama, C.,2019.

Exposures of children to neonicotinoids in pine wilt disease control areas. Environ. Toxicol. Chem.

38, 71–79.

Ip, S., Chung, M., Raman, G., Chew, P., Magula, N., DeVine, D., Trikalinos, T., Lau, J., 2007.

Breastfeeding and maternal and infant health outcomes in developed countries. Evid. Rep. Technol;

Assess. 153, 1–186.

Ito, S., Lee, A., 2003. Drug excretion into breast milk—overview. Adv. Drug Deliv. Rev. 55, 617–627.

Kanne, D.B., Dick, R.A., Tomizawa, M., Casida, J.E., 2005. Neonicotinoid nitroguanidine insecticide

metabolites: synthesis and nicotinic receptor potency of guanidines, aminoguanidines, and their

derivatives. Chem. Res. Toxicol. 18, 1479–1484.

Kao, C.C., Que, D.E., Bongo, S.J., Tayo, L.L., Lin, Y.H., Lin, C.W., Lin, S.L., Gou, Y.Y., Hsu, W.L.,

Shy, C.G., Huang, K.L., Tsai, M.H., Chao, H.R., 2019. Residue levels of organochlorine pesticides

in breast milk and its associations with cord blood thyroid hormones and the offspring's

neurodevelopment. Int. J. Environ. Res. Public Health. 16, 1438.

Kawakami, K., Yamada, K., Notsu, Y., Zahid, H.M., Nabika, T., Yamada, T., 2015. Development of onehanded milking device to collect milk from lactating rats: Analysis of feeding with progressive

lactation. Shimane J. Med. 32, 13–18.

Kitauchi, S., Maeda, M., Hirano, T., Ikenaka, Y., Nishi, M., Shoda, A., Murata, M., Mantani, Y.,

Yokoyama, T., Tabuchi, Y., Hoshi, N., 2020. Effects of in utero and lactational exposure to the noobserved-adverse-effect level (NOAEL) dose of the neonicotinoid clothianidin on the reproductive

organs of female mice. J. Vet. Med. Sci. 83, 746–753.

Knight, C.H., Maltz, E., Docherty, A.H., 1986. Milk yield and composition in mice: effects of litter size

and lactation number. Comp. Biochem. Physiol. A Comp. Physiol. 84, 127–133.

Leng, G., Onaka, T., Caquineau, C., Sabatier, N., Tobin, V.A., Takayanagi, Y., 2008. Oxytocin and

appetite. Prog. Brain. Res. 170, 137–151.

Leng, G., Pineda, R., Sabatier, N., Ludwig, M., 2015. 60 YEARS OF NEUROENDOCRINOLOGY:

The posterior pituitary, from Geoffrey Harris to our present understanding. J. Endocrinol. 226,

T173–185.

Maeda, M., Kitauchi, S., Hirano, T., Ikenaka, Y., Nishi, M., Shoda, A., Murata, M., Mantani, Y., Tabuchi,

Y., Yokoyama, T., Hoshi, N., 2020. Fetal and lactational exposure to the no-observed-adverse-effect

level (NOAEL) dose of the neonicotinoid pesticide clothianidin inhibits neurogenesis and induces

different behavioral abnormalities at the developmental stages in male mice. J. Vet. Med. Sci. 83,

542–548.

Matalova, P., Urbanek, K., Anzenbacher, P., 2016. Specific features of pharmacokinetics in children.

15

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

Drug Metab. Rev. 48, 70–79.

Matta, S.G., Balfour, D.J., Benowitz, N.L., Boyd, R.T., Buccafusco, J.J., Caggiula, A.R., Craig, C.R.,

Collins, A.C., Damaj, M.I., Donny, E.C., Gardiner, P.S., Grady, S.R., Heberlein, U., Leonard, S.S.,

Levin, E.D., Lukas, R.J., Markou, A., Marks, M.J., McCallum, S.E., Parameswaran, N., Perkins,

K.A., Picciotto, M.R., Quik, M., Rose, J.E., Rothenfluh, A., Schafer, W.R., Stolerman, I.P., Tyndale,

R.F., Wehner, J.M., Zirger, J.M., 2007. Guidelines on nicotine dose selection for in vivo research.

Psychopharmacology (Berl) 190, 269–319.

Muranishi, Y., Parry, L., Averous, J., Terrisse, A., Maurin, A.C., Chaveroux, C., Mesclon, F., Carraro, V.,

Bruhat, A., Fafournoux, P., Jousse, C., 2016. Method for collecting mouse milk without exogenous

oxytocin stimulation. Biotechniques 60, 47–49.

Nakayama, A., Yoshida, M., Kagawa, N., Nagano, T., 2018. The neonicotinoids acetamiprid and

imidacloprid impair neurogenesis and alter the microglial profile in the hippocampal dentate gyrus

of mouse neonates. J. Appl. Toxicol. 39, 877–887.

Napierala, M., Mazela, J., Merritt, T.A., Florek, E., 2016. Tobacco smoking and breastfeeding: Effect

on the lactation process, breast milk composition and infant development. A critical review.

Environ. Res. 151, 321–338.

Nishi, M., Sugio, S., Hirano, T., Kato, D., Wake, H., Shoda, A., Murata, M., Ikenaka, Y., Tabuchi, Y.,

Mantani, Y., Yokoyama, T., Hoshi, N., 2022. Elucidation of the neurological effects of clothianidin

exposure at the no-observed-adverse-effect level (NOAEL) using two-photon microscopy in vivo

imaging. J. Vet. Med. Sci. 84, 585–592.

Nostrand, S.D., Galton, D.M., Erb, H.N., Bauman, D.E., 1991. Effects of daily exogenous oxytocin on

lactation milk yield and composition. J. Dairy Sci. 74, 2119–2127.

Ohno, S., Ikenaka, Y., Onaru, K., Kubo, S., Sakata, N., Hirano, T., Mantani, Y., Yokoyama, T., Takahashi,

K., 2020. Quantitative elucidation of maternal-to-fetal transfer of neonicotinoid pesticide

clothianidin and its metabolites in mice. Toxicol. Lett. 322, 32–38.

Onaru, K., Ohno, S., Kubo, S., Nakanishi, S., Hirano, T., Mantani, Y., Yokoyama, T., Hoshi, N., 2020.

Immunotoxicity evaluation by subchronic oral administration of clothianidin in Sprague-Dawley

rats. J. Vet. Med. Sci. 82, 360–372.

Oya, N., Ito, Y., Ebara, T., Kato, S., Ueyama, J., Aoi, A., Nomasa, K., Sato, H., Matsuki, T., SugiuraOgasawara, M., Saitoh, S., Kamijima, M., 2021. Cumulative exposure assessment of

neonicotinoids and an investigation into their intake-related factors in young children in Japan. Sci.

Total Environ. 750, 141630.

Sano, K., Isobe, T., Yang, J., Win-Shwe, T.T., Yoshikane, M., Nakayama, S.F., Kawashima, T., Suzuki,

G., Hashimoto, S., Nohara, K., Tohyama, C., Maekawa, F., 2016. In utero and lactational exposure

to acetamiprid induces abnormalities in socio-sexual and anxiety-related behaviors of male mice.

Front. Neurosci. 10, 228.

Takada, T., Yoneda, N., Hirano, T., Onaru, K., Mantani, Y., Yokoyama, T., Kitagawa, H., Tabuchi, Y.,

Nimako, C., Ishizuka, M., Ikenaka, Y., Hoshi, N., 2020. Combined exposure to dinotefuran and

chronic mild stress counteracts the change of the emotional and monoaminergic neuronal activity

induced by either exposure singly despite corticosterone elevation in mice. J. Vet. Med. Sci. 82,

350–359.

Tokumoto, J., Danjo, M., Kobayashi, Y., Kinoshita, K., Omotehara, T., Tatsumi, A., Hashiguchi, M.,

Sekijima, T., Kamisoyama, H., Yokoyama, T., Kitagawa, H., Hoshi, N., 2013. Effects of exposure

to clothianidin on the reproductive system of male quails. J. Vet. Med. Sci. 75, 755–760.

16

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

Tomizawa, M., Casida, J.E., 2003. Selective toxicity of neonicotinoids attributable to specificity of

insect and mammalian nicotinic receptors. Annu Rev Entomol. 48, 339–364.

Tomizawa, M., Casida, J.E., 2005. Neonicotinoid insecticide toxicology: mechanisms of selective action.

Annu. Rev. Pharmacol. Toxicol. 45, 247–268.

Tyson, R.M., Shrader, E.A., Peblman, H.H., 1937. Drugs transmitted through breast milk. J. Pediatr. 11,

824–832.

Ueyama, J., Harada, K.H., Koizumi, A., Sugiura, Y., Kondo, T., Saito, I., Kamijima, M., 2015. Temporal

levels of urinary neonicotinoid and dialkylphosphate concentrations in Japanese women between

1994 and 2011. Environ. Sci. Technol. 49, 14522–14528.

Uneme, H., Konobe, M., Akayama, A., Yokota, T., Mizuta, K., 2006. Discovery and development of a

novel insecticide ‘Clothianidin’. Sumitomo Kagaku 2. 1–14. (https://www.sumitomochem.co.jp/english/rd/report/theses/docs/20060202_h6t.pdf) (accessed 19 February 2022).

U.S. Environmental Protection Agency, 2015. New and Pending Submissions for Outdoor Uses of

Products Containing the Nitroguanidine Neonicotinoids Imidacloprid, Dinotefuran, Clothianidin

or Thiamethoxam. https://www.epa.gov/sites/default/files/2015-04/documents/neonicotinoid-newuse.pdf (accessed 19 February 2022).

van den Berg, M., Kypke, K., Kotz, A., Tritscher, A., Lee, S.Y., Magulova, K., Fiedler, H., Malisch, R.,

2017. WHO/UNEP global surveys of PCDDs, PCDFs, PCBs and DDTs in human milk and benefitrisk evaluation of breastfeeding. Arch. Toxicol. 91, 83–96.

Verner, M.A., Plouffe, L., Kieskamp, K.K., Rodríguez-Leal, I., Marchitti, S.A., 2017. Evaluating the

influence of half-life, milk: plasma partition coefficient, and volume of distribution on lactational

exposure to chemicals in children. Environ. Int. 102, 223–229.

Vorherr, H., 1974. Drug excretion in breast milk. Postgrad Med. 56, 97–104.

Whitehorn, P.R., O'Connor, S., Wackers, F.L., Goulson, D., 2012. Neonicotinoid pesticide reduces

bumble bee colony growth and queen production. Science 336, 351–352.

Xiang, D., Xu, X., Zhou, Q., Yan, R., Chen, M., Guo, Y., Zhu, G., 2020. The expression of soluble

functional α7-nicotinic acetylcholine receptors in E. coli and its high-affinity binding to

neonicotinoid pesticides. Pestic. Biochem. Physiol. 164, 237–241.

Yanai, S., Hirano, T., Omotehara, T., Takada, T., Yoneda, N., Kubota, N., Yamamoto, A., Mantani, Y.,

Yokoyama, T., Kitagawa, H., Hoshi, N., 2017. Prenatal and early postnatal NOAEL-dose

clothianidin exposure leads to a reduction of germ cells in juvenile male mice. J. Vet. Med. Sci. 79,

1196–1203.

Yoneda, N., Takada, T., Hirano, T., Yanai, S., Yamamoto, A., Mantani, Y., Yokoyama, T., Kitagawa, H.,

Tabuchi, Y., Hoshi, N., 2018. Peripubertal exposure to the neonicotinoid pesticide dinotefuran

affects dopaminergic neurons and causes hyperactivity in male mice. J. Vet. Med. Sci. 80, 634–637.

Yuan, J., Zhang, R., Wu, R., Gu, Y., Lu, Y., 2020. The effects of oxytocin to rectify metabolic dysfunction

in obese mice are associated with increased thermogenesis. Mol. Cell. Endocrinol. 514, 110903.

17

533

FIGURE LEGENDS

534

Fig. 1 Experimental schedule

535

536

CLO was orally administered to ICR mice on postpartum day 10 or 11 (n=13). Breast milk and blood

samples were collected at 1, 3, 6, 9, 12, and 24 h after the administration.

537

538

Fig. 2 Milking device

539

(A) The milking device was a one-handed milking device for mice and rats (KN-591; Natsume

540

Seisakusho, Tokyo), which consists of a pressure adjustment pipe, sampling tube, exhaust pipe, and

541

milking pipe. The milking pipe was replaced with the straight part of a 10 µL tip, a pipette connecting

542

part of a 10 µL tip (110-207C; WATSON Co., Tokyo), and a silicon tube (10 mm long, 4 mm in outer

543

diameter, 2 mm in inner diameter). The exhaust pipe was connected to an aspirator and milk was

544

collected from a 10 µL tip in contact with the teat into a sampling tube. The milk collection method was

545

based on that in a previous study (Kawakami et al., 2015).

546

(B) The 10 µL tip was approximately 20 mm in length at the pipette-connecting part and at the straight

547

part. The colors of the parts in (A) correspond to those in (B).

548

549

Fig. 3 CLO and dm-CLO concentrations in breast milk and blood

550

(A) The CLO concentration in milk was highest at 1 h after the administration and was gradually

551

decreased at 3, 6, and 9 h. The blood CLO concentration was highest at 1 h after the administration and

552

was gradually decreased at 3, 6, and 9 h. The CLO concentration in the milk and blood was below the

553

detection limit at 12 and 24 h. CLO concentrations in the milk were significantly higher than those in

554

the blood at 1 and 3 h after the administration. The values are expressed as mean ± SE. The numbers of

555

samples were as follows: 1 h (milk, blood = 9), 3 h (milk, blood = 9), 6 h (milk = 4, blood = 6), 9 h (milk

556

= 7, blood = 9), 12 h (milk = 5, blood = 6), and 24 h (milk = 3, blood = 12). **P < 0.01.

557

(B) The milk dm-CLO concentrations were highest at 3 h after the administration and were gradually

558

decreased at 6, 9, and 12 h. Dm-CLO concentrations in the blood were highest at 1 h or 3 h after the

559

administration and were gradually decreased at 6 and 9 h after the administration. The milk dm-CLO

560

concentrations were below the detection limit at 24 h and the blood dm-CLO concentrations were below

561

the detection limit at 12 and 24 h after the administration. The concentrations of dm-CLO in the milk

562

were significantly higher than those of dm-CLO in the blood at 1, 3, 6, and 9 h after the administration.

563

The values are expressed as mean ± SE. The numbers of samples were as follows: 1 h (milk, blood = 9),

564

3 h (milk, blood = 9), 6 h (milk = 5, blood = 6), 9 h (milk = 7, blood = 9), 12 h (milk = 5, blood = 6),

565

and 24 h (milk = 5, blood = 12); *P < 0.05, **P < 0.01.

566

18

567

Fig. 4 Ratio of CLO and dm-CLO concentrations in the breast milk to those in the blood

568

(A) The distribution of CLO concentrations in the milk relative to CLO concentrations in the blood

569

showed that CLO concentrations in the milk were higher. The numbers of samples were as follows: 1 h

570

= 9, 3 h = 9, 6 h = 4, and 9 h =4.

571

(B) The distribution of dm-CLO concentrations in the milk relative to dm-CLO concentrations in the

572

blood showed that dm-CLO concentrations in the milk were higher. The numbers of samples were as

573

follows: 1 h = 9, 3 h = 9, 6 h = 5, and 9 h = 7.

574

575

Fig. S1 Changes in CLO and dm-CLO concentrations in the breast milk and blood

576

In the milk, the highest CLO concentration (2,663 ± 191 ng/mL) was observed at 1 h after the

577

administration, and the highest dm-CLO concentration (1,084 ± 126 ng/mL) was observed at 3 h after

578

the administration. In the blood, the CLO concentration was highest at 1 h after the administration (1,656

579

± 225 ng/mL), and the dm-CLO concentration was highest at 1 h after the administration (397 ± 73

580

581

ng/mL). The values are expressed as mean ± SE.

19

Fig. 1

1h 3h

6h

9h

: Administration

: Milk and blood collection

12 h

24 h

Fig. 2

A)

pressure

adjustment pipe

teats

10 µL tip

(connecting part)

silicon tube

B)

10 µL tip

aspirator

exhaust

pipe

connecting part

sampling tube

10 µL tip

(straight part)

straight part

Fig. 3

A)

B)

**

3,000

1,400

2,500

1,200

dm-CLO (ng/mL)

CLO (ng/mL)

**

2,000

1,500

1,000

500

1h

3h

6h

9h

12h

12

24h

24

blood

(h)

**

**

1h

3h

6h

9h

1,000

800

600

400

200

milk

12h

12

24h

24

(h)

Fig. 4

A)

B)

CLO

4,000

dm-CLO

4,000

3,500

3,500

3,000

3,000

2,500

2,500

milk (ng/mL)

milk (ng/mL)

y=x

2,000

1,500

2,000

1,500

1,000

1,000

500

500

500

1,000

1,500

2,000

2,500

3,000

3,500

y=x

4,000

500

3h

1,500

2,000

2,500

3,000

blood (ng/mL)

blood (ng/mL)

1h

1,000

6h

9h

12 h

24 h

3,500

4,000

Fig. S1

concentration (ng/mL)

3,000

milk: CLO

2,500

milk: dm-CLO

2,000

blood: CLO

1,500

blood: dm-CLO

1,000

500

1h

3h

6h

9h

12h

12

24h

24

(h)

Table 1 CLO concentration in the maternal milk and blood

dam

1h

3h

6h

9h

12 h

24 h

3428.8

1678.8

1519.6

492.7

74.5

< LOD

2299.7

1318.6

2546.1

1095.8

23.2

< LOD

3249.2

1471.2

532.9

2924.7

861.2

192.7

1474.5

1322.7

977

668.9

1032.4

1431.3

326.3

< LOD

2974.6

1336

1769.8

676.4

166.2

19.2

< LOD

2170.8

1195.6

1014

222.5

< LOD

< LOD

2409.9

1344.9

82.5

103.9

< LOD

1640.5

89.6

9.9

< LOD

< LOD

< LOD

3302.3

518

44.9

25.5

1722.2

360.5

9.3

< LOD

< LOD

< LOD

2659.3

3022.2

736.6

545.3

< LOD

10

28.9

< LOD

< LOD

38.4

< LOD

< LOD

11

10.3

< LOD

27.2

< LOD

< LOD

12

18

< LOD

< LOD

32.3

< LOD

< LOD

13

7.6

< LOD

< LOD

26.8

< LOD

< LOD

- : Not examined or samples not taken;

LOD: Limit of detection;

Upper cell: Breast milk; Lower cell: Maternal blood (ng/mL).

Table 2 dm-CLO concentration in the maternal milk and blood

dam

1h

3h

6h

9h

12 h

24 h

935.2

975.6

243.1

282.7

253.3

< LOD

546.3

1144.5

638.6

678.3

55.7

< LOD

790.9

1133.5

590.6

768.6

646.2

388.1

143.7

473.6

568.5

158.5

520.6

216.4

< LOD

744.5

925.7

602.5

62.1

368.6

376.7

179.4

54

< LOD

580

1370.7

230.1

219.8

29.3

< LOD

940.2

1860.9

334

155.9

< LOD

< LOD

521.3

122

101.8

47.6

< LOD

< LOD

1089.8

672.2

227.2

148.4

535.7

324

80.5

44.2

< LOD

< LOD

443

1196.6

< LOD

104.6

217.2

< LOD

10

187.8

49.7

< LOD

117.6

< LOD

< LOD

11

173

48

74.8

< LOD

< LOD

12

218.7

40.3

< LOD

81.5

< LOD

< LOD

13

96.6

22.2

< LOD

62.6

< LOD

< LOD

- : Not examined or samples not taken;

LOD: Limit of detection;

Upper cell: Breast milk; Lower cell: Maternal blood (ng/mL).

Table S1 CLO ratio of the maternal milk vs. blood

dam

1h

3h

6h

9h

12 h

24 h

2.3

3.4

0.9

1.2

1.1

1.7

2.8

1.4

0.9

3.0

1.7

2.0

2.1

5.4

1.5

15.0

8.3

1.9

1.4

4.8

3.6

5.5

10

0.8

11

0.4

12

0.6

13

0.3

- : Not examined or samples not taken

Table S2. dm-CLO ratio of the maternal milk vs. blood

dam

1h

3h

6h

9h

12 h

24 h

3.8

3.5

0.9

1.7

1.0

1.8

1.5

0.9

0.9

2.6

2.0

2.5

3.4

1.2

2.5

6.2

1.8

15.3

3.3

3.3

2.0

2.1

2.8

3.4

4.2

5.5

10

1.6

11

2.3

12

2.7

13

1.5

- : Not examined or samples not taken

Table S3 CLO concentration in the maternal milk and blood after administration of NOAEL doses of CLO

dam

CLO-1

CLO-2

CLO-3

CLO-4

CLO-5

Ctrl-1

Ctrl-2

Ctrl-3

Ctrl-4

Ctrl-5

1h

6h

31919.6

5517.0

151.6

2069.7

10922.3

< LOD

< LOD

35045.3

1247.3

< LOD

< LOD

9353.6

507.3

< LOD

< LOD

44963.2

2644.0

< LOD

< LOD

13900.1

700.5

< LOD

< LOD

147255.7

26980.2

2969.8

< LOD

9054.8

7439.3

753.2

< LOD

49791.8

4493.3

59.7

< LOD

14700.3

1562.3

31.5

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

- : Not examined or samples not taken;

12 h

24 h

< LOD

< LOD

LOD: Limit of detection;

Upper cell: Breast milk; Lower cell: Maternal blood (ng/mL).

Table S4 dm-CLO concentration in the maternal milk and blood after administration of NOAEL doses of CLO

dam

CLO-1

CLO-2

CLO-3

CLO-4

CLO-5

Ctrl-1

Ctrl-2

Ctrl-3

Ctrl-4

Ctrl-5

1h

6h

12 h

24 h

20273.8

13545.0

4267.6

1487.7

5956.0

855.7

< LOD

35611.8

3857.2

605.1

9736.3

1989.7

< LOD

< LOD

30322.4

16262.8

1608.0

< LOD

10954.7

5136.3

761.0

< LOD

157056.6

37224.2

10363.5

186.8

7731.8

10767.5

2869.4

< LOD

44303.9

15088.1

3007.8

< LOD

13115.4

< LOD

934.2

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

< LOD

- : Not examined or samples not taken;

< LOD

< LOD

< LOD

LOD: Limit of detection;

Upper cell: Breast milk; Lower cell: Maternal blood (ng/mL).

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る