リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Preclinical evaluation of the efficacy of an antibody to human SIRPα for cancer immunotherapy in humanized mouse models」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Preclinical evaluation of the efficacy of an antibody to human SIRPα for cancer immunotherapy in humanized mouse models

Saito, Yasuyuki Iida-Norita, Rie Afroj, Tania Refaat, Alaa Hazama, Daisuke Komori, Satomi Ohata, Shinya Takai, Tomoko Oduori, S. Okechi Kotani, Takenori Funakoshi, Youhei Koma, Yu-Ichiro Murata, Yoji Yakushijin, Kimikazu Matsuoka, Hiroshi Minami, Hironobu Yokozaki, Hiroshi Manz, G. Markus Matozaki, Takashi 神戸大学

2023.12.14

概要

Tumor-associated macrophages (TAMs) are abundant in the tumor microenvironment and are considered potential targets for cancer immunotherapy. To examine the antitumor effects of agents targeting human TAMs in vivo, we here established preclinical tumor xenograft models based on immunodeficient mice that express multiple human cytokines and have been reconstituted with a human immune system by transplantation of human CD34⁺ hematopoietic stem and progenitor cells (HIS-MITRG mice). HIS-MITRG mice supported the growth of both human cell line (Raji)– and patient-derived B cell lymphoma as well as the infiltration of human macrophages into their tumors. We examined the potential antitumor action of an antibody to human SIRPα (SE12C3) that inhibits the interaction of CD47 on tumor cells with SIRPα on human macrophages and thereby promotes Fcγ receptor–mediated phagocytosis of the former cells by the latter. Treatment with the combination of rituximab (antibody to human CD20) and SE12C3 inhibited Raji tumor growth in HIS-MITRG mice to a markedly greater extent than did rituximab monotherapy. This enhanced antitumor effect was dependent on human macrophages and attributable to enhanced rituximab-dependent phagocytosis of lymphoma cells by human macrophages. Treatment with rituximab and SE12C3 also induced reprogramming of human TAMs toward a proinflammatory phenotype. Furthermore, the combination treatment essentially prevented the growth of patient-derived diffuse large B cell lymphoma in HIS-MITRG mice. Our findings thus support the study of HIS-MITRG mice as a model for the preclinical evaluation in vivo of potential therapeutics, such as antibodies to human SIRPα, that target human TAMs.

この論文で使われている画像

参考文献

1. Binnewies M, Roberts EW, Kersten K, Chan V, Fearon DF, Merad M, et al.

Understanding the tumor immune microenvironment (TIME) for effective therapy.

Nat Med (2018) 24:541–50. doi: 10.1038/s41591-018-0014-x

10. Murata Y, Saito Y, Kotani T, Matozaki T. CD47-signal regulatory protein a

signaling system and its application to cancer immunotherapy. Cancer Sci (2018)

109:2349–57. doi: 10.1111/cas.13663

2. Gajewski TF, Schreiber H, Fu Y-X. Innate and adaptive immune cells in the tumor

microenvironment. Nat Immunol (2013) 14:1014–22. doi: 10.1038/ni.2703

11. Matozaki T, Murata Y, Okazawa H, Ohnishi H. Functions and molecular

mechanisms of the CD47–SIRPa signalling pathway. Trends Cell Biol (2009) 19:72–

80. doi: 10.1016/j.tcb.2008.12.001

3. Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D, et al. The

prognostic landscape of genes and infiltrating immune cells across human cancers. Nat

Med (2015) 21:938–45. doi: 10.1038/nm.3909

12. Feng M, Jiang W, Kim BYS, Zhang CC, Fu Y-X, Weissman IL. Phagocytosis

checkpoints as new targets for cancer immunotherapy. Nat Rev Cancer (2019) 19:568–

86. doi: 10.1038/s41568-019-0183-z

4. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. Tumour-associated

macrophages as treatment targets in oncology. Nat Rev Clin Oncol (2017) 14:399–416.

doi: 10.1038/nrclinonc.2016.217

13. Murata Y, Tanaka D, Hazama D, Yanagita T, Saito Y, Kotani T, et al. Antihuman SIRPa antibody is a new tool for cancer immunotherapy. Cancer Sci (2018)

109:1300–8. doi: 10.1111/cas.13548

5. Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to

therapy. Immunity (2014) 41:49–61. doi: 10.1016/j.immuni.2014.06.010

14. Yanagita T, Murata Y, Tanaka D, Motegi S, Arai E, Daniwijaya EW, et al. AntiSIRPa antibodies as a potential new tool for cancer immunotherapy. JCI Insight (2017)

2:e89140. doi: 10.1172/jci.insight.89140

6. Gül N, van Egmond M. Antibody-dependent phagocytosis of tumor cells by

macrophages: a potent effector mechanism of monoclonal antibody therapy of cancer.

Cancer Res (2015) 75:5008–13. doi: 10.1158/0008-5472.can-15-1330

15. A l l e n T M , B r e h m M A , B r i d g e s S , F e r g u s o n S , K u m a r P ,

Mirochnitchenko O, et al. Humanized immune system mouse models:

progress, challenges and opportunities. Nat Immunol (2019) 20:770–4.

doi: 10.1038/s41590-019-0416-z

7. Cassetta L, Pollard JW. Targeting macrophages: therapeutic approaches in cancer.

Nat Rev Drug Discovery (2018) 17:887–904. doi: 10.1038/nrd.2018.169

8. Veillette A, Chen J. SIRPa–CD47 immune checkpoint blockade in anticancer

therapy. Trends Immunol (2018) 39:173–84. doi: 10.1016/j.it.2017.12.005

16. Rongvaux A, Takizawa H, Strowig T, Willinger T, Eynon EE, Flavell RA, et al.

Human hemato-lymphoid system mice: current use and future potential for

medicine. Annu Rev Immunol (2013) 31:635–74. doi: 10.1146/annurev-immunol032712-095921

9. Barclay AN, van den Berg TK. The interaction between signal regulatory protein

alpha (SIRPa) and CD47: structure, function, and therapeutic target. Annu Rev

Immunol (2014) 32:25–50. doi: 10.1146/annurev-immunol-032713-120142

Frontiers in Immunology

15

frontiersin.org

Saito et al.

10.3389/fimmu.2023.1294814

17. Saito Y, Shultz LD, Ishikawa F. Understanding normal and Malignant human

hematopoiesis using next-generation humanized mice. Trends Immunol (2020)

41:706–20. doi: 10.1016/j.it.2020.06.004

in diffuse large B-cell lymphoma. EMBO Mol Med (2019) 11:e10576. doi: 10.15252/

emmm.201910576

37. Li Y-L, Shi Z-H, Wang X, Gu K-S, Zhai Z-M. Tumor-associated macrophages

predict prognosis in diffuse large B-cell lymphoma and correlation with peripheral

absolute monocyte count. BMC Cancer (2019) 19:1049. doi: 10.1186/s12885-019-6208-x

18. Walsh NC, Kenney LL, Jangalwe S, Aryee K-E, Greiner DL, Brehm MA, et al.

Humanized mouse models of clinical disease. Annu Rev Pathol (2017) 12:187–215.

doi: 10.1146/annurev-pathol-052016-100332

38. Christofides A, Strauss L, Yeo A, Cao C, Charest A, Boussiotis VA. The complex

role of tumor-infiltrating macrophages. Nat Immunol (2022) 23:1148–56. doi: 10.1038/

s41590-022-01267-2

19. Rochere PDL, Guil-Luna S, Decaudin D, Azar G, Sidhu SS, Piaggio E.

Humanized mice for the study of immuno-oncology. Trends Immunol (2018)

39:748–63. doi: 10.1016/j.it.2018.07.001

39. Pathria P, Louis TL, Varner JA. Targeting tumor-associated macrophages in

cancer. Trends Immunol (2019) 40:310–27. doi: 10.1016/j.it.2019.02.003

20. Chuprin J, Buettner H, Seedhom MO, Greiner DL, Keck JG, Ishikawa F, et al.

Humanized mouse models for immuno-oncology research. Nat Rev Clin Oncol (2023)

20:192–206. doi: 10.1038/s41571-022-00721-2

40. Goswami S, Anandhan S, Raychaudhuri D, Sharma P. Myeloid cell-targeted

therapies for solid tumours. Nat Rev Immunol (2023) 23:106–20. doi: 10.1038/s41577022-00737-w

21. Wang M, Yao L, Cheng M, Cai D, Martinek J, Pan C, et al. Humanized mice in

studying efficacy and mechanisms of PD-1-targeted cancer immunotherapy. FASEB J

(2017) 32:1537–49. doi: 10.1096/fj.201700740r

41. Cheng S, Li Z, Gao R, Xing B, Gao Y, Yang Y, et al. A pan-cancer single-cell

transcriptional atlas of tumor infiltrating myeloid cells. Cell (2021) 184:792–809.e23.

doi: 10.1016/j.cell.2021.01.010

22. Rongvaux A, Willinger T, Martinek J, Strowig T, Gearty SV, Teichmann LL, et al.

Development and function of human innate immune cells in a humanized mouse

model. Nat Biotechnol (2014) 32:364–72. doi: 10.1038/nbt.2858

42. Liberzon A, Birger C, Thorvaldsdó ttir H, Ghandi M, Mesirov JP, Tamayo P. The

molecular signatures database hallmark gene set collection. Cell Syst (2015) 1:417–25.

doi: 10.1016/j.cels.2015.12.004

23. Saito Y, Ellegast JM, Rafiei A, Song Y, Kull D, Heikenwalder M, et al. Peripheral

blood CD34+ cells efficiently engraft human cytokine knock-in mice. Blood (2016)

128:1829–33. doi: 10.1182/blood-2015-10-676452

43. Sadik A, Patterson LFS, Öztürk S, Mohapatra SR, Panitz V, Secker PF, et al. IL4I1

is a metabolic immune checkpoint that activates the AHR and promotes tumor

progression. Cell (2020) 182:1252–1270.e34. doi: 10.1016/j.cell.2020.07.038

24. Voillet V, Berger TR, McKenna KM, Paulson KG, Tan WH, Smythe KS, et al. An

in vivo model of human macrophages in metastatic melanoma. J Immunol (2022)

209:606–20. doi: 10.4049/jimmunol.2101109

44. Mills EL, Ryan DG, Prag HA, Dikovskaya D, Menon D, Zaslona Z, et al.

Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of

KEAP1. Nature (2018) 556:113–7. doi: 10.1038/nature25986

25. Valenzuela DM, Murphy AJ, Frendewey D, Gale NW, Economides AN,

Auerbach W, et al. High-throughput engineering of the mouse genome coupled with

high-resolution expression analysis. Nat Biotechnol (2003) 21:652–9. doi: 10.1038/

nbt822

45. Su S, Zhao J, Xing Y, Zhang X, Liu J, Ouyang Q, et al. Immune checkpoint

inhibition overcomes ADCP-induced immunosuppression by macrophages. Cell

(2018) 175:442–457.e23. doi: 10.1016/j.cell.2018.09.007

26. Seiffert M, Cant C, Chen Z, Rappold I, Brugger W, Kanz L, et al. Human signalregulatory protein is expressed on normal, but not on subsets of leukemic myeloid cells

and mediates cellular adhesion involving its counterreceptor CD47. Blood (1999)

94:3633–43. doi: 10.1182/blood.V94.11.3633

46. Roca H, Jones JD, Purica MC, Weidner S, Koh AJ, Kuo R, et al. Apoptosisinduced CXCL5 accelerates inflammation and growth of prostate tumor metastases in

bone. J Clin Invest (2017) 128:248–66. doi: 10.1172/jci92466

27. Chapuy B, Cheng H, Watahiki A, Ducar MD, Tan Y, Chen L, et al. Diffuse large

B-cell lymphoma patient-derived xenograft models capture the molecular and

biological heterogeneity of the disease. Blood (2016) 127:2203–13. doi: 10.1182/

blood-2015-09-672352

47. Sakamoto M, Murata Y, Tanaka D, Kakuchi Y, Okamoto T, Hazama D, et al.

Anticancer efficacy of monotherapy with antibodies to SIRPa/SIRPb1 mediated by

induction of antitumorigenic macrophages. Proc Natl Acad Sci USA (2022) 119:

e2109923118. doi: 10.1073/pnas.2109923118

28. Rafiei A, Wilk CM, Helbling PM, Myburgh R, Saito Y, Haralambieva E, et al.

BRAFV 600E or mutant MAP2K1 human CD34+ cells establish Langerhans cell-like

histiocytosis in immune-deficient mice. Blood Adv (2020) 4:4912–7. doi: 10.1182/

bloodadvances.2020001926

48. Geeraerts X, Ferná ndez-Garcia J, Hartmann FJ, de GKE, Martens L, Elkrim Y,

et al. Macrophages are metabolically heterogeneous within the tumor

microenvironment. Cell Rep (2021) 37:110171. doi: 10.1016/j.celrep.2021.110171

49. Wculek SK, Heras-Murillo I, Mastrangelo A, Mañanes D, Galá n M, Miguel V,

et al. Oxidative phosphorylation selectively orchestrates tissue macrophage

homeostasis. Immunity (2023) 56:516–530.e9. doi: 10.1016/j.immuni.2023.01.011

29. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR:

ultrafast universal RNA-seq aligner. Bioinformatics (2013) 29:15–21. doi: 10.1093/

bioinformatics/bts635

50. Tentler JJ, Tan AC, Weekes CD, Jimeno A, Leong S, Pitts TM, et al. Patientderived tumour xenografts as models for oncology drug development. Nat Rev Clin

Oncol (2012) 9:338–50. doi: 10.1038/nrclinonc.2012.61

30. Love MI, Huber W, Anders S. Moderated estimation of fold change and

dispersion for RNA-seq data with DESeq2. Genome Biol (2014) 15:550. doi: 10.1186/

s13059-014-0550-8

51. Advani R, Flinn I, Popplewell L, Forero A, Bartlett NL, Ghosh N, et al. CD47

blockade by Hu5F9-G4 and rituximab in non-Hodgkin’s lymphoma. New Engl J Med

(2018) 379:1711–21. doi: 10.1056/nejmoa1807315

31. Chao MP, Jaiswal S, Weissman-Tsukamoto R, Alizadeh AA, Gentles AJ,

Volkmer J, et al. Calreticulin is the dominant pro-phagocytic signal on multiple

human cancers and is counterbalanced by CD47. Sci Transl Med (2010) 2:63ra94.

doi: 10.1126/scitranslmed.3001375

52. Clohessy JG, Pandolfi PP. Mouse hospital and co-clinical trial project—from

bench to bedside. Nat Rev Clin Oncol (2015) 12:491–8. doi: 10.1038/nrclinonc.2015.62

32. Ma R-Y, Black A, Qian B-Z. Macrophage diversity in cancer revisited in the era

of single-cell omics. Trends Immunol (2022) 43:546–63. doi: 10.1016/j.it.2022.04.008

53. Gauttier V, Pengam S, Durand J, Biteau K, Mary C, Morello A, et al. Selective

SIRPa blockade reverses tumor T cell exclusion and overcomes cancer immunotherapy

resistance. J Clin Invest (2020) 130:6109–23. doi: 10.1172/jci135528

33. Gubin MM, Esaulova E, Ward JP, Malkova ON, Runci D, Wong P, et al. Highdimensional analysis delineates myeloid and lymphoid compartment remodeling

during successful immune-checkpoint cancer therapy. Cell (2018) 175:1014–

1030.e19. doi: 10.1016/j.cell.2018.09.030

54. Martinov T, McKenna KM, Tan WH, Collins EJ, Kehret AR, Linton JD, et al.

Building the next generation of humanized hemato-lymphoid system mice. Front

Immunol (2021) 12:643852. doi: 10.3389/fimmu.2021.643852

34. Mulder K, Patel AA, Kong WT, Piot C, Halitzki E, Dunsmore G, et al. Crosstissue single-cell landscape of human monocytes and macrophages in health and

disease. Immunity (2021) 54:1883–1900.e5. doi: 10.1016/j.immuni.2021.07.007

55. Li Y, Mention J, Court N, Masse-Ranson G, Toubert A, Spits H, et al. A novel

Flt3-deficient HIS mouse model with selective enhancement of human DC

development. Eur J Immunol (2016) 46:1291–9. doi: 10.1002/eji.201546132

35. Schmitz R, Wright GW, Huang DW, Johnson CA, Phelan JD, Wang JQ, et al.

Genetics and pathogenesis of diffuse large B-cell lymphoma. N Engl J Med (2018)

378:1396–407. doi: 10.1056/nejmoa1801445

56. Xu MM, Pu Y, Han D, Shi Y, Cao X, Liang H, et al. Dendritic cells but not

macrophages sense tumor mitochondrial DNA for Cross-priming through signal

regulatory protein a signaling. Immunity (2017) 47:363–373.e5. doi: 10.1016/

j.immuni.2017.07.016

36. Hashwah H, Bertram K, Stirm K, Stelling A, Wu C, Kasser S, et al. The IL-6

signaling complex is a critical driver, negative prognostic factor, and therapeutic target

Frontiers in Immunology

16

frontiersin.org

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る