リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Isolation of TCR genes with tumor-killing activity from tumor-infiltrating and circulating lymphocytes in a tumor rejection cynomolgus macaque model」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Isolation of TCR genes with tumor-killing activity from tumor-infiltrating and circulating lymphocytes in a tumor rejection cynomolgus macaque model

TERADA Koji 70342722 KONDO Kenta 60779974 ISHIGAKI Hirohito 90432301 NAGASHIMA Ayaka SATOOKA Hiroki 40750360 NAGANO Seiji MASUDA Kyoko KAWAMURA Teruhisa HIRATA Takako 00346199 0000-0002-1740-6168 OGASAWARA Kazumasa 20169163 ITOH Yasushi 90324566 KAWAMOTO Hiroshi AGATA Yasutoshi 60263141 滋賀医科大学

2022.03.17

概要

To develop effective adoptive cell transfer therapy using T cell receptor (TCR)-engineered T cells, it is critical to isolate tumor-reactive TCRs that have potent anti-tumor activity. In humans, tumor-infiltrating lymphocytes (TILs) have been reported to contain CD8+PD-1+ T cells that express tumor-reactive TCRs. Characterization of tumor reactivity of TILs from non-human primate tumors could improve anti-tumor activity of TCR-engineered T cells in preclinical research. In this study, we sought to isolate TCR genes from CD8+PD-1+ T cells among TILs in a cynomolgus macaque model of tumor transplantation in which the tumors were infiltrated with CD8+ T cells and were eventually rejected. We analyzed the repertoire of TCRα and β pairs obtained from single CD8+PD-1+ T cells in TILs and circulating lymphocytes and identified multiple TCR pairs with high frequency, suggesting that T cells expressing these recurrent TCRs were clonally expanded in response to tumor cells. We further showed that the recurrent TCRs exhibited cytotoxic activity to tumor cells in vitro and potent anti-tumor activity in mice transplanted with tumor cells. These results imply that this tumor transplantation macaque model recapitulates key features of human TILs and can serve as a platform toward preclinical studies of non-human primate tumor models.

この論文で使われている画像

関連論文

参考文献

19. Dranoff, G. (2011). Experimental mouse tumour models: what can be learnt about

human cancer immunology? Nat. Rev. Immunol. 12, 61–66.

1. Gubin, M.M., Zhang, X., Schuster, H., Caron, E., Ward, J.P., Noguchi, T., Ivanova, Y.,

Hundal, J., Arthur, C.D., Krebber, W.J., et al. (2014). Checkpoint blockade cancer

immunotherapy targets tumour-specific mutant antigens. Nature 515, 577–581.

20. Carlsson, H.E., Schapiro, S.J., Farah, I., and Hau, J. (2004). Use of primates in

research: a global overview. Am. J. Primatol. 63, 225–237.

2. Pardoll, D.M. (2012). The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer 12, 252–264.

21. Akagi, T. (2004). Oncogenic transformation of human cells: shortcomings of rodent

model systems. Trends Mol. Med. 10, 542–548.

3. Sadelain, M., Rivière, I., and Riddell, S. (2017). Therapeutic T cell engineering. Nature

545, 423–431.

22. Frese, K.K., and Tuveson, D.A. (2007). Maximizing mouse cancer models. Nat. Rev.

Cancer 7, 645–658.

4. Lim, W.A., and June, C.H. (2017). The principles of engineering immune cells to treat

cancer. Cell 168, 724–740.

23. Akagi, T., Sasai, K., and Hanafusa, H. (2003). Refractory nature of normal human

diploid fibroblasts with respect to oncogene-mediated transformation. Proc. Natl.

Acad. Sci. U S A 100, 13567–13572.

5. Veatch, J.R., Lee, S.M., Fitzgibbon, M., Chow, I.T., Jesernig, B., Schmitt, T., Kong,

Y.Y., Kargl, J., Houghton, A.M., Thompson, J.A., et al. (2018). Tumor-infiltrating

BRAFV600E-specific CD4+ T cells correlated with complete clinical response in melanoma. J. Clin. Invest. 128, 1563–1568.

6. Tran, E., Robbins, P.F., Lu, Y.C., Prickett, T.D., Gartner, J.J., Jia, L., Pasetto, A., Zheng,

Z., Ray, S., Groh, E.M., et al. (2016). T-cell transfer therapy targeting mutant KRAS in

cancer. N. Engl. J. Med. 375, 2255–2262.

7. Prickett, T.D., Crystal, J.S., Cohen, C.J., Pasetto, A., Parkhurst, M.R., Gartner, J.J., Yao,

X., Wang, R., Gros, A., Li, Y.F., et al. (2016). Durable complete response from metastatic melanoma after transfer of autologous T cells recognizing 10 mutated tumor

antigens. Cancer Immunol. Res. 4, 669–678.

8. Parkhurst, M., Gros, A., Pasetto, A., Prickett, T., Crystal, J.S., Robbins, P., and

Rosenberg, S.A. (2017). Isolation of T-cell receptors specifically reactive with mutated

tumor-associated antigens from tumor-infiltrating lymphocytes based on CD137

expression. Clin. Cancer Res. 23, 2491–2505.

9. Robbins, P.F., Lu, Y.C., El-Gamil, M., Li, Y.F., Gross, C., Gartner, J., Lin, J.C., Teer,

J.K., Cliften, P., Tycksen, E., et al. (2013). Mining exomic sequencing data to identify

24. Hahn, W.C., Counter, C.M., Lundberg, A.S., Beijersbergen, R.L., Brooks, M.W., and

Weinberg, R.A. (1999). Creation of human tumour cells with defined genetic elements. Nature 400, 464–468.

25. Lundberg, A.S., Randell, S.H., Stewart, S.A., Elenbaas, B., Hartwell, K.A., Brooks,

M.W., Fleming, M.D., Olsen, J.C., Miller, S.W., Weinberg, R.A., et al. (2002).

Immortalization and transformation of primary human airway epithelial cells by

gene transfer. Oncogene 21, 4577–4586.

26. Ishigaki, H., Maeda, T., Inoue, H., Akagi, T., Sasamura, T., Ishida, H., Inubushi, T.,

Okahara, J., Shiina, T., Nakayama, M., et al. (2017). Transplantation of iPS-derived

tumor cells with a homozygous MHC haplotype induces GRP94 antibody production

in MHC-matched macaques. Cancer Res. 77, 6001–6010.

27. Satooka, H., Ishigaki, H., Todo, K., Terada, K., Agata, Y., Itoh, Y., Ogasawara, K., and

Hirata, T. (2020). Characterization of tumour-infiltrating lymphocytes in a tumour

rejection cynomolgus macaque model. Sci. Rep. 10, 8414.

28. Kashima, S., Maeda, T., Masuda, K., Nagano, S., Inoue, T., Takeda, M., Kono, Y.,

Kobayashi, T., Saito, S., Higuchi, T., et al. (2020). Cytotoxic T lymphocytes

Molecular Therapy: Oncolytics Vol. 24 March 2022

85

Molecular Therapy: Oncolytics

regenerated from iPS cells have therapeutic efficacy in a patient-derived xenograft

solid tumor model. iScience 23, 100998.

isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen

without requiring knowledge of epitope specificities. Blood 110, 201–210.

29. Maeda, T., Nagano, S., Ichise, H., Kataoka, K., Yamada, D., Ogawa, S., Koseki, H.,

Kitawaki, T., Kadowaki, N., Takaori-Kondo, A., et al. (2016). Regeneration of

CD8ab T cells from T-cell-derived iPSC imparts potent tumor antigen-specific cytotoxicity. Cancer Res. 76, 6839–6850.

40. Gros, A., Parkhurst, M.R., Tran, E., Pasetto, A., Robbins, P.F., Ilyas, S., Prickett, T.D.,

Gartner, J.J., Crystal, J.S., Roberts, I.M., et al. (2016). Prospective identification of neoantigen-specific lymphocytes in the peripheral blood of melanoma patients. Nat.

Med. 22, 433–438.

30. Maeda, T., Nagano, S., Kashima, S., Terada, K., Agata, Y., Ichise, H., Ohtaka, M.,

Nakanishi, M., Fujiki, F., Sugiyama, H., et al. (2020). Regeneration of tumor-antigen-specific cytotoxic T lymphocytes from iPSCs transduced with exogenous TCR

genes. Mol. Ther. Methods Clin. Dev. 19, 250–260.

41. Scheper, W., Kelderman, S., Fanchi, L.F., Linnemann, C., Bendle, G., de Rooij, M.A.J.,

Hirt, C., Mezzadra, R., Slagter, M., Dijkstra, K., et al. (2019). Low and variable tumor

reactivity of the intratumoral TCR repertoire in human cancers. Nat. Med. 25, 89–94.

31. Cohen, C.J., Zhao, Y., Zheng, Z., Rosenberg, S.A., and Morgan, R.A. (2006). Enhanced

antitumor activity of murine-human hybrid T-cell receptor (TCR) in human lymphocytes is associated with improved pairing and TCR/CD3 stability. Cancer Res.

66, 8878–8886.

32. Fu, X., Tao, L., Rivera, A., Williamson, S., Song, X.T., Ahmed, N., and Zhang, X.

(2010). A simple and sensitive method for measuring tumor-specific T cell cytotoxicity. PLoS One 5, e11867.

33. Karimi, M.A., Lee, E., Bachmann, M.H., Salicioni, A.M., Behrens, E.M., Kambayashi,

T., and Baldwin, C.L. (2014). Measuring cytotoxicity by bioluminescence imaging

outperforms the standard chromium-51 release assay. PLoS One 9, e89357.

34. Betts, M.R., Brenchley, J.M., Price, D.A., De Rosa, S.C., Douek, D.C., Roederer, M.,

and Koup, R.A. (2003). Sensitive and viable identification of antigen-specific CD8+

T cells by a flow cytometric assay for degranulation. J. Immunol. Methods 281, 65–78.

35. Lima, N.S., Takata, H., Huang, S.H., Haregot, A., Mitchell, J., Blackmore, S., Garland,

A., Sy, A., Cartwright, P., Routy, J.P., et al. (2020). CTL clonotypes with higher TCR

affinity have better ability to reduce the HIV latent reservoir. J. Immunol. 205,

699–707.

36. Shitaoka, K., Hamana, H., Kishi, H., Hayakawa, Y., Kobayashi, E., Sukegawa, K., Piao,

X., Lyu, F., Nagata, T., Sugiyama, D., et al. (2018). Identification of tumoricidal TCRs

from tumor-infiltrating lymphocytes by single-cell analysis. Cancer Immunol. Res. 6,

378–388.

37. Tan, Q., Zhang, C., Yang, W., Liu, Y., Heyilimu, P., Feng, D., Xing, L., Ke, Y., and Lu,

Z. (2019). Isolation of T cell receptor specifically reactive with autologous tumour

cells from tumour-infiltrating lymphocytes and construction of T cell receptor engineered T cells for esophageal squamous cell carcinoma. J. Immunother. Cancer 7, 232.

38. Agata, Y., Kawasaki, A., Nishimura, H., Ishida, Y., Tsubata, T., Yagita, H., and Honjo,

T. (1996). Expression of the PD-1 antigen on the surface of stimulated mouse T and B

lymphocytes. Int. Immunol. 8, 765–772.

39. Wolfl, M., Kuball, J., Ho, W.Y., Nguyen, H., Manley, T.J., Bleakley, M., and

Greenberg, P.D. (2007). Activation-induced expression of CD137 permits detection,

86

Molecular Therapy: Oncolytics Vol. 24 March 2022

42. Dunn, G.P., Bruce, A.T., Ikeda, H., Old, L.J., and Schreiber, R.D. (2002). Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 3, 991–998.

43. Kaspareit, J., Friderichs-Gromoll, S., Buse, E., and Habermann, G. (2007).

Spontaneous neoplasms observed in cynomolgus monkeys (Macaca fascicularis) during a 15-year period. Exp. Toxicol. Pathol. 59, 163–169.

44. Gros, A., Tran, E., Parkhurst, M.R., Ilyas, S., Pasetto, A., Groh, E.M., Robbins, P.F.,

Yossef, R., Garcia-Garijo, A., Fajardo, C.A., et al. (2019). Recognition of human

gastrointestinal cancer neoantigens by circulating PD-1+ lymphocytes. J. Clin.

Invest. 129, 4992–5004.

45. Pasetto, A., Gros, A., Robbins, P.F., Deniger, D.C., Prickett, T.D., Matus-Nicodemos,

R., Douek, D.C., Howie, B., Robins, H., Parkhurst, M.R., et al. (2016). Tumor- and

neoantigen-reactive T-cell receptors can be identified based on their frequency in

fresh tumor. Cancer Immunol. Res. 4, 734–743.

46. Wan, H., Feng, C., Teng, F., Yang, S., Hu, B., Niu, Y., Xiang, A.P., Fang, W., Ji, W., Li,

W., et al. (2015). One-step generation of p53 gene biallelic mutant cynomolgus monkey via the CRISPR/Cas system. Cell Res. 25, 258–261.

47. Morita, S., Kojima, T., and Kitamura, T. (2000). Plat-E: an efficient and stable system

for transient packaging of retroviruses. Gene Ther. 7, 1063–1066.

48. Miller, A.D., Garcia, J.V., von Suhr, N., Lynch, C.M., Wilson, C., and Eiden, M.V.

(1991). Construction and properties of retrovirus packaging cells based on gibbon

ape leukemia virus. J. Virol. 65, 2220–2224.

49. Kobayashi, E., Mizukoshi, E., Kishi, H., Ozawa, T., Hamana, H., Nagai, T., Nakagawa,

H., Jin, A., Kaneko, S., and Muraguchi, A. (2013). A new cloning and expression system yields and validates TCRs from blood lymphocytes of patients with cancer within

10 days. Nat. Med. 19, 1542–1546.

50. Robbins, P.F., Li, Y.F., El-Gamil, M., Zhao, Y., Wargo, J.A., Zheng, Z., Xu, H.,

Morgan, R.A., Feldman, S.A., Johnson, L.A., et al. (2008). Single and dual amino

acid substitutions in TCR CDRs can enhance antigen-specific T cell functions.

J. Immunol. 180, 6116–6131.

OMTO, Volume 24

Supplemental information

Isolation of TCR genes with tumor-killing activity

from tumor-infiltrating and circulating lymphocytes

in a tumor rejection cynomolgus macaque model

Koji Terada, Kenta Kondo, Hirohito Ishigaki, Ayaka Nagashima, Hiroki Satooka, Seiji

Nagano, Kyoko Masuda, Teruhisa Kawamura, Takako Hirata, Kazumasa

Ogasawara, Yasushi Itoh, Hiroshi Kawamoto, and Yasutoshi Agata

Supplemental Table S1. V(D)J genes and CDR3 amino acid sequences of the TCR genes isolated from CD8+PD-1+ T cells in TILs of Macaque

ID

TRBV

TRBD

TRBJ

CDR3 aa seq.

TRAV

TRAJ

CDR3 aa seq.

TCR pair

1.

TRBV7-2*01

TRBD2*01

TRBJ1-2*01

ASRPGGYDYT

TRAV23

TRAJ54*01

AAVSAQGAQKLV

5A9

2.

TRBV7-2*01

TRBD2*01

TRBJ1-2*01

ASRPGGYDYT

TRAV23

TRAJ54*01

AAVSAQGAQKLV

3.

TRBV7-2*01

TRBD2*01

TRBJ1-2*01

ASRPGGYDYT

TRAV23

TRAJ54*01

AAVSAQGAQKLV

4.

TRBV7-2*01

TRBD2*01

TRBJ1-2*01

ASRPGGYDYT

TRAV23

TRAJ54*01

AAVSAQGAQKLV

5.

TRBV7-2*01

TRBD2*01

TRBJ1-2*01

ASRPGGYDYT

TRAV23

TRAJ54*01

AAVSAQGAQKLV

6.

TRBV21-1*01

TRBD1*01

TRBJ1-2*01

ASSKGPQGTYDYT

TRAV13-1*01

TRAJ10*01

AASIEGGGNKLT

7.

TRBV21-1*01

TRBD1*01

TRBJ1-2*01

ASSKGPQGTYDYT

TRAV13-1*01

TRAJ10*01

AASIEGGGNKLT

8.

TRBV21-1*01

TRBD1*01

TRBJ1-2*01

ASSKGPQGTYDYT

TRAV13-1*01

TRAJ10*01

AASIEGGGNKLT

9.

TRBV21-1*01

TRBD1*01

TRBJ1-2*01

ASSKGPQGTYDYT

TRAV13-1*01

TRAJ10*01

AASIEGGGNKLT

10.

TRBV21-1*01

TRBD1*01

TRBJ1-2*01

ASSKGPQGTYDYT

TRAV13-1*01

TRAJ10*01

AASIEGGGNKLT

11.

TRBV2*01

TRBJ1-1*01

ASSELRNTEAF

TRAV36

TRAJ29*01

AVLNSGNRALV

12.

TRBV2*01

TRBJ1-1*01

ASSELRNTEAF

TRAV36

TRAJ29*01

AVLNSGNRALV

13.

TRBV2*01

TRBJ1-1*01

ASSELRNTEAF

TRAV36

TRAJ29*01

AVLNSGNRALV

14.

TRBV2*01

TRBJ1-1*01

ASSELRNTEAF

TRAV36

TRAJ29*01

AVLNSGNRALV

15.

TRBV5-6*01

TRBD2*02

TRBJ2-3*01

ASSLVRGLSDPQY

TRAV27*01

TRAJ52*01

AGAGGAGYGKL

16.

TRBV5-6*01

TRBD2*02

TRBJ2-3*01

ASSLVRGLSDPQY

TRAV27*01

TRAJ52*01

AGAGGAGYGKL

17.

TRBV5-6*01

TRBD2*02

TRBJ2-3*01

ASSLVRGLSDPQY

TRAV27*01

TRAJ52*01

AGAGGAGYGKL

18.

TRBV5-6*01

TRBD2*02

TRBJ2-3*01

ASSLVRGLSDPQY

TRAV27*01

TRAJ52*01

AGAGGAGYGKL

19.

TRBV2*01

TRBD2*01

TRBJ2-5*01

ASSEAGTPLGETQY

TRAV8-4*01

TRAJ31*01

AVNDRDNNARVI

20.

TRBV2*01

TRBD2*01

TRBJ2-5*01

ASSEAGTPLGETQY

TRAV8-4*01

TRAJ31*01

AVNDRDNNARVI

21.

TRBV2*01

TRBD2*01

TRBJ2-5*01

ASSEAGTPLGETQY

TRAV8-4*01

TRAJ31*01

AVNDRDNNARVI

5B1

4C2

4D3

3E5

22.

TRBV5-6*01

TRBD1*01

TRBJ1-5*01

ASSLAYRETYQPQY

TRAV25*01

TRAJ20*01

AGEAYNNYKLS

23.

TRBV5-6*01

TRBD1*01

TRBJ1-5*01

ASSLAYRETYQPQY

TRAV25*01

TRAJ20*01

AGEAYNNYKLS

24.

TRBV5-6*01

TRBD1*01

TRBJ1-5*01

ASSLAYRETYQPQY

TRAV25*01

TRAJ20*01

AGEAYNNYKLS

25.

TRBV5-1*01

TRBD2*01

TRBJ2-1*01

ASSLGWGELNEQF

TRAV8-6*02

TRAJ33*01

AVSGDSNYQLI

26.

TRBV5-1*01

TRBD2*01

TRBJ2-1*01

ASSLGWGELNEQF

TRAV8-6*02

TRAJ33*01

AVSGDSNYQLI

27.

TRBV5-5*01

TRBD1*01

TRBJ1-1*01

ASSLGQLNTEAF

TRAV26-1*01

TRAJ43*01

IGRFGNDIR

28.

TRBV5-5*01

TRBD1*01

TRBJ1-1*01

ASSLGQLNTEAF

TRAV26-1*01

TRAJ43*01

IGRFGNDIR

29.

TRBV10-1*01

TRBJ1-1*01

ASFSSLNTEAF

TRAV25*01

TRAJ22*01

SSIFCDSGWQLT

30.

TRBV10-1*01

TRBJ1-1*01

ASFSSLNTEAF

TRAV25*01

TRAJ22*01

SSIFCDSGWQLT

31.

TRBV10-1*01

TRBD2*01

TRBJ2-1*01

ASSEDWGGFYGEQF

TRAV38-2

TRAJ53*01

AYRGSSNYKLT

32.

TRBV10-1*01

TRBD2*01

TRBJ2-1*01

ASSEDWGGFYGEQF

TRAV38-2

TRAJ53*01

AYRGSSNYKLT

33.

TRBV12-3*01

TRBJ2-7*01

ASKKSSYEQY

TRAV6*01

TRAJ34*01

ALHNANKLI

34.

TRBV12-3*01

TRBJ2-7*01

ASKKSSYEQY

TRAV6*01

TRAJ34*01

ALHNANKLI

35.

TRBV2*01

TRBJ2-7*01

ASRLYEQY

TRAV5*01

TRAJ30*01

AENREDKII

36.

TRBV2*01

TRBD2*01

TRBJ2-4*01

PAVMRRGEAKTLST

TRAV19*01

TRAJ33*01

ALNEAEDSNYQLI

37.

TRBV2*01

TRBD1*01

TRBJ2-7*01

ATRTDLYEQY

TRAV20*01

TRAJ53*01

AVNSGSSNYKLT

38.

TRBV2*01

TRBD1*01

TRBJ2-3*01

ASSRTGGMNTDPQY

TRAV22*01

TRAJ32*01

AVLYYGGSGNKLI

39.

TRBV2*01

TRBJ1-5*01

ASSDLSNQPQY

TRAV26-1*01

TRAJ5*01

IVRPPDTGRRALT

40.

TRBV2*01

TRBJ1-1*01

ASSELRNTEAF

TRAV36

TRAJ29*01

CAQFRNRAFV

41.

TRBV3-1*01

TRBD2*01

TRBJ2-1*01

ASSQDGGADNEQF

TRAV9-1*01

TRAJ28*01

ALNLGYSGAGSYQLT

42.

TRBV3-1*01

TRBD2*02

TRBJ1-2*01

ASSQGRGNYDYT

TRAV18*01

TRAJ10*01

VLKGASNKLT

43.

TRBV3-2*01

TRBJ2-5*01

ASTSFGDAVETQY

TRAV6*01

TRAJ40*01

ALDASTTGNYKYI

3F1

1D4

44.

TRBV3-2*01

TRBD1*01

TRBJ1-4*01

ASSQQQATNEKLF

TRAV9-2*01

TRAJ6*01

ALTHPSGGGYVLT

45.

TRBV5-1*01

TRBJ1-4*01

ASSVNEKLF

TRAV12-3*01

TRAJ2*01

AMTLGGTIDKLT

46.

TRBV5-1*01

TRBD1*01

TRBJ2-3*01

ASSIRDRGEDPQY

TRAV23

TRAJ37*02

AASEASSNTGKLI

47.

TRBV5-5*01

TRBD1*01

TRBJ1-1*01

ASSLGQLNTEAF

TRAV26-1*01

TRAJ49*01

IVGFGNQL

48.

TRBV5-6*01

TRBD2*02

TRBJ2-1*01

ASSRLGGAHGEQF

TRAV4*01

TRAJ36*01

LVGDGSWGKQPV

49.

TRBV5-6*01

TRBD1*01

TRBJ1-5*01

ASSLEQGRNQPQY

TRAV12-3*01

TRAJ24*02

AMRADSWGKLQ

50.

TRBV5-6*01

TRBD1*01

TRBJ1-5*01

ASRQANREIYQPQY

TRAV25*01

TRAJ20*01

AGEASNNYKLS

51.

TRBV5-6*01

TRBD1*01

TRBJ2-3*01

ASTLAGRGRSHPQY

TRAV25*01

TRAJ20*01

AGEASNNYKLS

52.

TRBV5-6*01

TRBD1*01

TRBJ2-7*01

ASSRGRQTYEQY

TRAV38-1*01

TRAJ43*01

AFMIYNNNDIR

53.

TRBV5-8*01

TRBJ2-3*01

ASSLGHPPPQS

TRAV26-1*01

TRAJ43*01

IGRFGNDIR

54.

TRBV6-1*01

TRBD1*01

TRBJ2-5*01

ASSETGDQETQ

TRAV12-2*02

TRAJ22*01

AVYPDSGWQLT

55.

TRBV6-1*01

TRBD1*01

TRBJ1-6*02

ASSEYRVSYNSPLH

TRAV14

TRAJ30*01

AMMNRDDKII

56.

TRBV6-1*01

TRBD1*01

TRBJ2-4*01

ASTPGQTSQNTQY

TRAV20*01

TRAJ9*01

AVQAWTGGFKTV

57.

TRBV6-1*01

TRBD2*01

TRBJ1-3*01

KWPEVGGFRKHHV

TRAV21*01

TRAJ9*01

AVGYTGGFKTV

58.

TRBV6-1*01

TRBD1*01

TRBJ2-7*01

ASTKQGPQDEQY

TRAV29

TRAJ52*01

ASCGAGYGKLT

59.

TRBV6-5*01

TRBD1*01

TRBJ1-1*01

GSSEGVKTEAF

TRAV3*01

TRAJ40*01

AVNEVSGNYKYI

60.

TRBV6-5*01

TRBD2*01

TRBJ2-5*01

LSPSVTKRPST

TRAV3*01

TRAJ40*01

AVNEVSGNYKYI

61.

TRBV6-5*01

TRBJ2-6*01

GSSVSSGASVLT

TRAV18*01

TRAJ8*01

VVHRLSETR

62.

TRBV7-2*01

TRBJ2-1*01

ASSLLALNEQF

TRAV17*01

TRAJ48*01

VTEGFGNEKLT

63.

TRBV7-2*01

TRBD2*01

TRBJ1-2*01

ASRPGGYDYT

TRAV19*01

TRAJ52*01

ALNEESWWCWLWKAD

64.

TRBV7-2*01

TRBJ2-1*01

ASSLLALNEQF

TRAV26-2*01

TRAJ48*01

LLGRGVEVRNP

65.

TRBV7-2*01

TRBJ1-2*01

ASRDSMSMDDYT

TRAV29

TRAJ52*01

AARGSGYGKLT

66.

TRBV7-2*01

TRBD1*01

TRBJ2-5*01

ASSLVGSRVTETQY

TRAV38-1*01

TRAJ42*01

AFMKHEVYGGSQGNLI

67.

TRBV7-4*01

TRBD1*01

TRBJ2-3*01

ASSGRDRDLADPQY

TRAV18*01

TRAJ4*01

VLPAGGGYDKLI

68.

TRBV7-6*01

TRBD1*01

TRBJ2-7*01

ASSSLQTDWGDFYEQY

TRAV12-3*01

TRAJ37*02

AMSVTSNTGKLI

69.

TRBV7-6*01

TRBD1*01

TRBJ2-1*01

ASSPDWGEGSPSEQF

TRAV13-2*01

TRAJ47*02

AEMDYGNKLI

70.

TRBV7-6*01

TRBD2*01

TRBJ2-4*01

ASSPGPRRGAVNRLY

TRAV16*01

TRAJ54*01

ALSGSLGAQKLV

71.

TRBV7-9*01

TRBD2*02

TRBJ2-7*01

ASSGSQPSYEQY

TRAV13-1*01

TRAJ33*01

AATPGSNYQLI

1B9

1G9

72.

TRBV7-9*01

TRBD1*01

TRBJ2-4*01

ASSLGTPGNTQY

TRAV16*01

TRAJ16*01

ALKSSDGQKLL

73.

TRBV9*01

TRBJ2-2*01

PAANFMETPRSCS

TRAV26-1*01

TRAJ22*01

IVRPPSDSGWQLT

74.

TRBV9*01

TRBJ2-1*01

ASSEVGYGEQF

TRAV35*01

TRAJ32*01

AGQKGGGGSGNKLI

75.

TRBV9*01

TRBD1*01

TRBJ2-1*01

ATGELGNGDQF

TRAV35*01

TRAJ32*01

AGQKGGGGSGNKLI

76.

TRBV10-1*01

TRBJ2-1*01

ASSEINALYGEQF

TRAV8-6*02

TRAJ24*02

AVTTDSWGKLQ

77.

TRBV10-1*01

TRBJ1-1*01

ASFSSLNTEAF

TRAV25*01

TRAJ22*01

SSISSDSGWQLT

78.

TRBV10-1*01

TRBJ1-1*01

ASFSSLNTEAF

TRAV25*01

TRAJ22*01

STIYCGCGSQLT

79.

TRBV12-3*01

TRBD1*01

TRBJ2-7*01

ASTTPGQVSEQY

TRAV22*01

TRAJ40*01

AVTTGNYKYI

80.

TRBV12-3*01

TRBD1*01

TRBJ2-1*01

ASSLKWGSSYNEQF

TRAV23

TRAJ27*01

AAGDNAGKLT

81.

TRBV13*01

TRBJ2-7*01

ASNFVSIYEQY

TRAV2*01

TRAJ27*01

AVLHTNADKLT

82.

TRBV13*01

TRBD1*01

TRBJ1-1*01

TSREGRGLGNEAF

TRAV9-1*01

TRAJ27*01

ALEAGKLT

83.

TRBV14*01

TRBD2*02

TRBJ1-3*01

ASSQAEGTISGNTVY

TRAV2*01

TRAJ11*01

AVEDSGYSTLT

84.

TRBV14*01

TRBD2*02

TRBJ2-3*01

ASSLWEGRDPQY

TRAV2*01

TRAJ23*01

AVEDQDQAGKLI

85.

TRBV14*01

TRBD1*01

TRBJ1-5*01

ASSQGGGSQPQY

TRAV3*01

TRAJ34*01

AVRDPNANKLI

86.

TRBV14*01

TRBD1*01

TRBJ1-2*01

ASTSRDIHDYT

TRAV17*01

TRAJ44*01

ATDSFTGIASKLT

87.

TRBV14*01

TRBD1*01

TRBJ1-5*01

PGGRVAISPS

TRAV19*01

TRAJ32*01

APAGGYGGRGNKLI

88.

TRBV15*01

TRBD1*01

TRBJ2-4*01

ASSKDMGTEGTKTFSS

TRAV26-1*01

TRAJ48*01

IVRARQGGNENLT

89.

TRBV15*02

TRBD1*01

TRBJ1-2*01

ASSKKGQVSHST

TRAV16*01

TRAJ54*01

AQRVITQGAQKLV

90.

TRBV20-1*01

TRBD2*01

TRBJ2-7*01

SAPGLASSYEQY

TRAV9-1*01

TRAJ31*01

ALRQNNNARVI

91.

TRBV20-1*01

TRBD1*01

TRBJ1-2*01

SATLGTEFFRDYT

TRAV12-1*01

TRAJ23*01

AVNMAYNQAGKLI

92.

TRBV20-1*01

TRBD1*01

TRBJ1-3*01

SARMQGTRITVY

TRAV38-2

TRAJ33*01

AYRGNMDSNYQLI

93.

TRBV23-1*01

TRBD1*01

TRBJ2-3*01

ASTGFGDPQY

TRAV9-2*01

TRAJ13*01

ALSSGSYQKVT

94.

TRBV23-1*01

TRBD1*01

TRBJ2-3*01

ASTGFGDPQY

TRAV9-2*01

TRAV9-2*01

ALSSGSTRESS

95.

TRBV23-1*01

TRBD1*01

TRBJ2-3*01

ASKQGWGHRSSV

TRAV18*01

TRAJ33*01

VLRDPMDSNYQLI

96.

TRBV23-1*01

TRBJ2-3*01

ASSQGWGTDPQY

TRAV18*01

TRAJ33*01

VLRDPMDSNYQLI

97.

TRBV24-1*01

TRBD1*01

TRBJ1-2*01

ATSDLSITGADYDYT

TRAV12-3*01

TRAJ32*01

ARPGGSGNKLI

98.

TRBV27*01

TRBD2*01

TRBJ2-1*01

ASSGGPGQF

TRAV1-2*01

TRAJ34*01

AVRANKL

99.

TRBV27*01

TRBD1*01

TRBJ1-1*01

ASSKGGGNTEAF

TRAV6*01

TRAJ24*02

APGSDSWGKLQ

100.

TRBV27*01

TRBD1*01

TRBJ1-5*01

ASTPLGESNQPQY

TRAV8-4*01

TRAJ11*01

AVILNSGYSTLT

101.

TRBV27*01

TRBJ2-1*01

ASSLRDFDGEQF

TRAV25*01

TRAJ21*01

AGMDNFNKFY

102.

TRBV27*01

TRBJ1-3*01

ASSSWQPSYSGNTVY

TRAV29

TRAJ30*01

GGRDDKII

103.

TRBV28*01

TRBD1*01

TRBJ1-1*01

ASSFWRGVNTEAF

TRAV8-3*02

TRAJ12*01

HNGATGDNKLI

104.

TRBV28*01

TRBD1*01

TRBJ1-1*01

ASSFWRGVNTEAF

TRAV8-3*01

TRAJ50*01

GAGATSYNKLT

105.

TRBV28*01

TRBJ2-6*01

ASLDSGASVLT

TRAV12-3*01

TRAJ41*01

AMTHSNSGYALN

106.

TRBV29-1*01

TRBD1*01

TRBJ1-2*01

SVGTGYNYDYT

TRAV4*01

TRAJ30*01

LVGERDDKII

107.

TRBV29-1*01

TRBJ2-1*01

SVASLGFSYGEQF

TRAV12-3*01

TRAJ43*01

AMKKDNNDIR

108.

TRBV30*02

TRBD1*01

TRBJ1-1*01

AWKYEGGQTEAF

TRAV36

TRAJ29*01

AYLSGNRALV

Supplemental Table S2. Nucleotide sequence of PCR primers and PCR conditions.

Primer name

TCRb primer sequence

5A9_b_F

5’-TTCAGTCGACTGGATCCAGCCGCCATGGGCACCAGGCTCCT-3’

5A9_b_R

5’-GGTCACGTTCCTCAGGTCAACAGTTAACTTGGTCCCTG-3’

5B1_b_F

5’-TTCAGTCGACTGGATCCAGCCACCATGTGCCTCAGACTTCT-3’

5B1_b_R

5’-GGTCACGTTCCTCAGGTCCTCTACAACAGTTAACTTG-3’

4C2_b_F

5’-TTCAGTCGACTGGATCCAGCCGCCATGGATACCTGTCTCCT-3’

4C2_b_R

5’-GGTCACGTTCCTCAGGTCCTCTACAACTGTGAGTCTGG-3’

4D3_b_F

5’-TTCAGTCGACTGGATCCAGCCGCCATGGGCCCCGGGCTCCT-3’

4D3_b_R

5’-GGTCACGTTCCTCAGGTCCTCGAGCACTGTCAGCCGGG-3’

3E5_b_F

5’-TTCAGTCGACTGGATCCAGCCGCCATGGATACCTGGCTCCT-3’

3E5_b_R

5’-GGTCACGTTCCTCAGGTCCTCGAGCACCAGGAGCCGCG-3’

3F1_b_F

5’-TTCAGTCGACTGGATCCAGCCGCCATGGGCCCCGGGCTCCT-3’

3F1_b_R

5’-GGTCACGTTCCTCAGGTCCTCTAGGACGGAGAGTCGAG-3’

1B9_b_F

5’-TTCAGTCGACTGGATCCAGCCGCCATGCTGTTTTGCTGGGCA-3’

1B9_b_R

5’-GGTCACGTTCCTCAGGTCCTCGAGCACTGTCAGCCGGG-3’

1D4_b_F

5’-TTCAGTCGACTGGATCCAGCCACCATGGATACCTGGCTCCT-3’

1D4_b_R

5’-GGTCACGTTCCTCAGGTCCTCTAGGACGGAGAGTCGAG-3’

1G9_b_F

5’-TTCAGTCGACTGGATCCAGTTCCCCTTTCATCAATGC-3’

1G9_b_R

5’-GGTCACGTTCCTCAGGTCCTCTAGCACCAGGAGCCGCG-3’

1385_b_F

5’-TTCAGTCGACTGGATCCAGCCGCCATGGGCACCAGGCTCCTCTG-3’

1385_b_R

5’-GGTCACGTTCCTCAGGTCCTCTACGACCGTGAGCCTGG-3’

NYESO1_1G4_b_F

5’-TTCAGTCGACTGGATCCAGCCACCATGTCTATCGGCCTGCTG-3’

NYESO1_1G4_b_R

5’-GGTCACGTTCCTCAGGTCTTCCAGCACGGTCAGTCTGC-3’

TCRa primer sequence

5A9_a_F

5’-GAGGAGAATCCTGGCCCAATGGACAAGATCTTAGGAGC-3’

5A9_a_R

5’-CGGGCTCTGGGTTCTGGATATTCAGGTTGATGCTCAGCC-3’

5B1_a_F

5’-GAGGAGAATCCTGGCCCAATGACATCCATTCGAGCTGT-3’

5B1_a_R

5’-CGGGCTCTGGGTTCTGGATATTCAGTTCCACTTTTAGCT-3’

4C2_a_F

5’-GAGGAGAATCCTGGCCCAATGATGAAGTGTTCACAGGC-3’

4C2_a_R

5’-CGGGCTCTGGGTTCTGGATATTTGGAATCACAGAAAGTC-3’

4D3_a_F

5’-GAGGAGAATCCTGGCCCAATGGTCCTGAAATTCTCCGT-3’

4D3_a_R

5’-CGGGCTCTGGGTTCTGGATATTTGGATAGACAGTTAAGA-3’

3E5_a_F

5’-GAGGAGAATCCTGGCCCAATGCTCCTGCTGCTCGTCCT-3’

3E5_a_R

5’-CGGGCTCTGGGTTCTGGATATTGGGCTTCACCACCAGCT-3’

3F1_a_F

5’-GAGGAGAATCCTGGCCCAATGCACACATCTGCTTTCCA-3’

3F1_a_R

5’-CGGGCTCTGGGTTCTGGATATTTGCTCTTACAGTTACTG-3’

1B9_a_F

5’-GAGGAGAATCCTGGCCCAATGGACAAGATCTTAGGAGC-3’

1B9_a_R

5’-CGGGCTCTGGGTTCTGGATATCTGGTTGTACTTGTAAAG-3’

1D4_a_F

5’-GAGGAGAATCCTGGCCCAATGAGGCTGGTGGCAAGAGT-3’

1D4_a_R

5’-CGGGCTCTGGGTTCTGGATATTTGGTTGCACTTGGAGTC-3’

1G9_a_F

5’-GAGGAGAATCCTGGCCCAATGATGAAATCCTTGAGAGT-3’

1G9_a_R

5’-CGGGCTCTGGGTTCTGGATATCAGGTACAACGGTCAATT-3’

1385_a_F

5’-GAGGAGAATCCTGGCCCAATGAAGACACTTACTGGATC-3’

1385_a_R

5’-CGGGCTCTGGGTTCTGGATATTTGGTTGCACTTGGAGTC-3’

NYESO1_1G4_a_F

5’-GAGGAGAATCCTGGCCCAATGGAAACCCTGCTGGGCCT-3’

NYESO1_1G4_a_R

5’-CGGGCTCTGGGTTCTGGATGTAGGGGTGCACGATCAGGC-3’

RT primer sequence

RTa

5’-CAGCGGTGTTTGGCAGCTCTTC-3’

RTb1

5’-CTGGCAAAAGAAGAATGTAT-3’

RTb2

5’-ACACAGATTGGGAGCAGGTA-3’

First PCR primer sequence

F1st

5’-TCAAGCAGTAGCAGCAGTTCGATAAGGATCCCCCCCCCCCCCDN-3’

R1sta

5’-GAGAGGGAGAGGAGGGGCGAT-3’

R1stb1

5’-TCACAACGGGTTAGAAGCTC-3’

R1stb2

5’-GGATGAAGAATGACCCGGGAT-3’

Second PCR primer sequence

F2nd

5’-AGCAGTAGCAGCAGTTCGATA-3’

R2nda

5’-AGTAAATAGGCAGACAGAGGT-3’

R2ndb1

5’-GTGGTCGGGGTAGAAGCCTGT-3’

R2ndb2

5’-GTGGTCGGGGTAGAAGCCTGT-3’

First PCR condition

1) 94˚C, 2 min

2) 98˚C, 10 sec

3) 68˚C, 30 sec (-2˚C / cycle)

4) 68˚C, 1 min 30 sec

5) Go to 2), Repeat 4 times

6) 98˚C, 10 sec

7) 60˚C, 30 sec

8) 68˚C, 1 min 30 sec

9) Go to 6), Repeat 24 times

10) 68˚C 10 min

11) 12˚C

Second PCR condition

1) 94˚C, 2 min

2) 98˚C, 10 sec

3) 68˚C, 30 sec (-2˚C / cycle)

4) 68˚C, 1 min 30 sec

5) Go to 2), Repeat 4 times

6) 98˚C, 10 sec

7) 60˚C, 30 sec

8) 68˚C, 1 min 30 sec

9) Go to 6), Repeat 29 times

10) 68˚C 10 min

11) 12˚C

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る