リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Spatial and temporal heterogeneity of Kohlrausch–Williams–Watts stress relaxations in metallic glasses」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Spatial and temporal heterogeneity of Kohlrausch–Williams–Watts stress relaxations in metallic glasses

Ishii, Akio 大阪大学

2021.07.02

概要

We perform a molecular dynamics (MD) stress relaxation simulation for Zr50Cu40Al10 metallic glass to confirm that the time dependency of stress relaxation conforms with the Kohlrausch–Williams–Watts (KWW) equation, and to derive the temperature dependency of the Kohlrausch exponent βKWW. We also calculate local plastic deformation based on atomic strain, then discuss the morphology of relaxation and calculate the probability density of stress relaxation with respect to the characteristic time of relaxation from the number of deformed atoms. Afterward, we derive the time dependency of stress relaxation as a mode-averaged decay function, which expresses spatial and temporal heterogeneity. Both the results of simulation and calculation reproduce the KWW relaxation form and are in good agreement, confirming the spatially and temporally heterogeneous nature of KWW relaxation. The heterogeneity of the stress relaxation of metallic glass is determined by local stress changes caused by microscopic local plastic deformation.

参考文献

[1] R. Kohlrausch, Prog. Ann. Phys. 91 (1854) 179–214.

[2] G. Williams, D.C. Watts, Trans. Faraday Soc. 66 (1970) 80–85.

[3] G. Williams, D.C. Watts, S.B. Dev, A.M. North, Trans. Faraday Soc. 67 (1971) 1323–1336.

[4] J.C. Phillips, Rep. Prog. Phys. 59 (1996) 1133–1207.

[5] Z. Wang, B.A. Sun, H.Y. Bai, W.H. Wang, Nature Comm. 5 (2014) 5823.

[6] Y. Yu, M. Wang, D. Zhang, B. Wang, G. Sant, M. Bauchy, Phys. Rev. Lett. 115 (2015), 165901.

[7] J.C. Qiao, Y.J. Wang, L.Z. Zhao, L.H. Dai, D. Crespo, J.M. Pelletier, L.M. Keer,Y. Yao, Phys. Rev. B 94 (2016), 104203.

[8] Q. Wang, S. Zhang, Y. Yang, Y. Dong, C. Liu, J. Lu, Nature Comm. 6 (2015) 7876.

[9] Z.W. Wu, W. Kob, W.H. Wang, L. Xu, Nature Comm. 9 (2018) 5334.

[10] Y.B. Yang, Q. Yang, D. Wei, L.H. Dai, H.B. Yu, Y.J. Wang, Phys. Rev. B 102 (2020), 174103.

[11] H.B. Yu, W.H. Wang, H.Y. Bai, K. Samwer, Nat. Sci. Rev. 1 (2014) 429–461.

[12] M. Wakeda, J. Saida, J. Li, S. Ogata, Sci. Rep. 5 (2015) 10545.

[13] N. Miyazaki, M. Wakeda, Y.J. Wang, S. Ogata, N.P.J. Comput, Mater. 2 (2016) 16013.

[14] R. Richert, J. Phys. Condens. Matter 14 (2002) 201.

[15] F. Zhu, H.K. Nguyen, S.X. Song, D.P. Aji, A. Hirata, H. Wang, K. Nakajima, M.W. Chen, Nature Comm. 7 (2016) 11516.

[16] D.P. Wang, J.C. Qiao, C.T. Liu, Mater. Res. Lett. 7 (2019) 305–311.

[17] J. Qiao, Q. Wang, J. Pelletier, H. Kato, R. Casalini, D. Crespo, E. Pineda, Y. Yao,Y. Yang, Prog. Mater. Sci. 104 (2019) 250–329.

[18] B. Ruta, Y. Chushkin, G. Monaco, L. Cipelletti, E. Pineda, P. Bruna, V.M. Giordano,M. Gonzalez-Silveira, Phys. Rev. Lett. 109 (2012), 165701.

[19] B. Ruta, G. Baldi, G. Monaco, Y. Chushkin, J. Chem. Phys. 138 (2013), 054508.

[20] F. Shimizu, S. Ogata, J. Li, Mater. Trans. 48 (2007) 2923–2927.

[21] H.W. Sheng, M.J. Kramer, A. Cadien, T. Fujita, M.W. Chen, Phys. Rev. B 83 (2011), 134118.

[22] S. Plimpton, J. Comput. Phys. 117 (1995) 1–19.

[23] A.S. Argon, Acta Metall. 27 (1979) 47–58.

[24] M. Wakeda, J. Saida, Sci. Tech. Adv. Mater. 20 (2019) 632–642.

[25] B. Wang, L. Wang, B. Shang, X. Gao, Y. Yang, H. Bai, M. Pan, W. Wang, P. Guan, Acta Mater. 195 (2020) 611–620.

[26] A. Ishii, J. Li, S. Ogata, Inter. J. Plas. 82 (2016) 32–43.

[27] P. Cao, M.P. Short, S. Yip, Proc. Natl. Acad. Sci. U.S.A. 114 (2017) 13631–13636.

[28] A. Ishii, Comput. Mater. Sci. 183 (2020), 109907.

[29] D. Han, D. Wei, P.H. Cao, Y.J. Wang, L.H. Dai, Phys. Rev. B 101 (2020) 64205.

[30] T. Egami, Prog. Mater. Sci. 56 (2011) 637–653.

[31] P. Zhao, J. Li, Y. Wang, Inter. J. Plas. 40 (2013) 1–22.

[32] T. Mura, Micromechanics of Defects in Solids, Springer Science & Business Media, Heidelberg, Germany, 2013.

[33] P. Cao, M.P. Short, S. Yip, Proc. Natl. Acad. Sci. U.S.A. 116 (2019) 18790–18797.

[34] J. Li, Model. Simul. Mater. Sci. Eng. 11 (2003) 173–177.

[35] A. Dubach, F.H. Torre, J.F. Lffler, Phil. Mag. Lett. 87 (2007) 695–704.

[36] H.B. Yu, K. Samwer, Y. Wu, W.H. Wang, Phys. Rev. Lett. 109 (2012), 095508.

[37] A. Ishii, S. Ogata, H. Kimizuka, J. Li, Phys. Rev. B 85 (2012), 064303.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る