リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Practical Agar-Based Disk Diffusion Tests Using Sulfamoyl Heteroarylcarboxylic Acids for Identification of Subclass B1 Metallo-β-Lactamase-Producing Enterobacterales」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Practical Agar-Based Disk Diffusion Tests Using Sulfamoyl Heteroarylcarboxylic Acids for Identification of Subclass B1 Metallo-β-Lactamase-Producing Enterobacterales

法月, 千尋 名古屋大学

2022.07.04

概要

The worldwide distribution of carbapenemase-producing Enterobacterales (CPE) is a serious public health concern as they exhibit carbapenem resistance, thus limiting the choice of antimicrobials for treating CPE infections. Combination treatment with a b-lactam and one of the newly approved b-lactamase inhibitors, such as avibactam, relebactam, or vaborbactam, provides a valuable tool to cope with CPE; however, these inhibitors are active only against serine-type carbapenemases and not against metallo-b-lactamases (MbLs). Therefore, it is important to readily differentiate carbapenemases produced by CPE by using simple and reliable methods in order to choose an appropriate treatment. Here, we developed three practical agar-based disk diffusion tests (double-disk synergy test [DDST], disk potentiation test, and modified carbapenem inactivation method [mCIM]) to discriminate the production of subclass B1 MbLs, such as IMP-, NDM-, and VIM-type MbLs, from the other carbapenemases, especially serine-type carbapenemases. This was accomplished using B1 MbL-specific sulfamoyl heteroarylcarboxylic acid inhibitors, 2,5-dimethyl-4-sulfamoylfuran-3-carboxylic acid (SFC) and 2,5- diethyl-1-methyl-4-sulfamoylpyrrole-3-carboxylic acid (SPC), originally developed by us. The DDST and mCIM using SFC and SPC revealed high sensitivity (95.3%) and specificity (100%) in detecting B1 MbL-producing Enterobacterales. In the disk potentiation test, the sensitivities using SFC and SPC were 89.1% and 93.8%, respectively, whereas the specificities for both were 100%. These methods are simple and inexpensive and have a high accuracy rate. These methods would therefore be of immense assistance in the specific detection and discrimination of B1 MbL-producing Enterobacterales in clinical microbiology laboratories and would lead to better prevention against infection with such multidrug-resistant bacteria in clinical settings.

参考文献

1. Gupta N, Limbago BM, Patel JB, Kallen AJ. 2011. Carbapenem-resistant Enterobacteriaceae: epidemiology and prevention. Clin Infect Dis 53:60–67. https:// doi.org/10.1093/cid/cir202.

2. Queenan AM, Bush K. 2007. Carbapenemases: the versatile b-lactamases. Clin Microbiol Rev 20:440–458. https://doi.org/10.1128/CMR.00001-07.

3. Pitout JDD, Peirano G, Kock MM, Strydom KA, Matsumura Y. 2020. The Global ascendency of OXA-48-type carbapenemases. Clin Microbiol Rev 33:e00102-19. https://doi.org/10.1128/CMR.00102-19.

4. Nordmann P, Poirel L, Dortet L. 2012. Rapid detection of carbapenemaseproducing Enterobacteriaceae. Emerg Infect Dis 18:1503–1507. https://doi .org/10.3201/eid1809.120355.

5. Pierce VM, Simner PJ, Lonsway DR, Roe-Carpenter DE, Johnson JK, Brasso WB, Bobenchik AM, Lockett ZC, Charnot-Katsikas A, Ferraro MJ, Thomson RB, Jr, Jenkins SG, Limbago BM, Das S. 2017. Modified carbapenem inactivation method for phenotypic detection of carbapenemase production among Enterobacteriaceae. J Clin Microbiol 55:2321–2333. https://doi.org/ 10.1128/JCM.00193-17.

6. Bush K, Bradford PA. 2019. Interplay between b-lactamases and new b-lactamase inhibitors. Nat Rev Microbiol 17:295–306. https://doi.org/10 .1038/s41579-019-0159-8.

7. Arakawa Y, Shibata N, Shibayama K, Kurokawa H, Yagi T, Fujiwara H, Goto M. 2000. Convenient test for screening metallo-b-lactamase-producing gram-negative bacteria by using thiol compounds. J Clin Microbiol 38:40–43. https://doi.org/10.1128/JCM.38.1.40-43.2000.

8. Doi Y, Potoski BA, Adams-Haduch JM, Sidjabat HE, Pasculle AW, Paterson DL. 2008. Simple disk-based method for detection of Klebsiella pneumoniae carbapenemase-type b-lactamase by use of a boronic acid compound. J Clin Microbiol 46:4083–4086. https://doi.org/10.1128/JCM.01408-08.

9. Yamada K, Sasaki M, Imai W, Murakami H, Morita T, Aoki K, Ishii Y, Tateda K. 2019. Evaluation of inhibitor-combination mCIM for detecting MBLproducing Enterobacterales using three MBL inhibitors. J Med Microbiol 68:1604–1606. https://doi.org/10.1099/jmm.0.001073.

10. Sfeir MM, Hayden JA, Fauntleroy KA, Mazur C, Johnson JK, Simner PJ, Das S, Satlin MJ, Jenkins SG, Westblade LF. 2019. EDTA-modified carbapenem inactivation method: a phenotypic method for detecting metallo-b-lactamase-producing Enterobacteriaceae. J Clin Microbiol 57:e01757-18. https://doi.org/10.1128/JCM.01757-18.

11. Wachino JI, Jin W, Kimura K, Kurosaki H, Sato A, Arakawa Y. 2020. Sulfamoyl heteroarylcarboxylic acids as promising metallo-b-lactamase inhibitors for controlling bacterial carbapenem resistance. mBio 11:e03144-19. https://doi .org/10.1128/mBio.03144-19.

12. Wachino JI, Kanechi R, Nishino E, Mochizuki M, Jin W, Kimura K, Kurosaki H, Arakawa Y. 2019. 4-Amino-2-sulfanylbenzoic acid as a potent subclass B3 metallo-b-lactamase-specific inhibitor applicable for distinguishing metallob-lactamase subclasses. Antimicrob Agents Chemother 63:e01197-19. https:// doi.org/10.1128/AAC.01197-19.

13. Wachino J, Matsui M, Tran HH, Suzuki M, Suzuki S, Shibayama K. 2014. Evaluation of a double-disk synergy test with a common metallo-b-lactamase inhibitor, mercaptoacetate, for detecting NDM-1-producing Enterobacteriaceae and Acinetobacter baumannii. Jpn J Infect Dis 67:66–68. https://doi.org/10.7883/yoken.67.66.

14. Clinical and Laboratory Standards Institute. 2020. Performance standards for antimicrobial susceptibility testing, 30th ed. Clinical and Laboratory Standards Institute, Wayne, PA.

15. Wachino J, Yamaguchi Y, Mori S, Kurosaki H, Arakawa Y, Shibayama K. 2013. Structural insights into the subclass B3 metallo-b-lactamase SMB-1 and the mode of inhibition by the common metallo-b-lactamase inhibitor mercaptoacetate. Antimicrob Agents Chemother 57:101–109. https:// doi.org/10.1128/AAC.01264-12.

16. Hattori T, Kawamura K, Arakawa Y. 2013. Comparison of test methods for detecting metallo-b-lactamase-producing Gram-negative bacteria. Jpn J Infect Dis 66:512–518. https://doi.org/10.7883/yoken.66.512.

17. Sakanashi D, Kawachi M, Uozumi Y, Nishio M, Hara Y, Suematsu H, Hagihara M, Nishiyama N, Asai N, Koizumi Y, Yamagishi Y, Mikamo H. 2017. Evaluation of commercial phenotypic assays for the detection of IMP- or New Delhi metallo-b-lactamase-producing Enterobacteriaceae isolates in Japan. J Infect Chemother 23:474–480. https://doi.org/10.1016/j.jiac.2017.04.003.

18. Lisboa LF, Turnbull L, Boyd DA, Mulvey MR, Dingle TC. 2018. Evaluation of a modified carbapenem inactivation method for detection of carbapenemases in Pseudomonas aeruginosa. J Clin Microbiol 56:e01234-17. https:// doi.org/10.1128/JCM.01234-17.

19. Uechi K, Tada T, Shimada K, Kuwahara-Arai K, Arakaki M, Tome T, Nakasone I, Maeda S, Kirikae T, Fujita J. 2017. A modified carbapenem inactivation method, CIMTris, for carbapenemase production in Acinetobacter and Pseudomonas species. J Clin Microbiol 55:3405–3410. https://doi.org/10.1128/JCM.00893-17.

20. Gill CM, Lasko MJ, Asempa TE, Nicolau DP. 2020. Evaluation of the EDTAmodified carbapenem inactivation method for detecting metallo-b-lactamase-producing Pseudomonas aeruginosa. J Clin Microbiol 58:e02015-19. https://doi.org/10.1128/JCM.02015-19.

21. Humphries RM. 2019. CIM City: the game continues for a better carbapenemase test. J Clin Microbiol 57:e00353-19. https://doi.org/10.1128/JCM .00353-19.

22. Kazmierczak KM, Karlowsky JA, de Jonge BLM, Stone GG, Sahm DF. 2021. Epidemiology of carbapenem resistance determinants identified in meropenem-nonsusceptible Enterobacterales collected as part of a global surveillance program, 2012 to 2017. Antimicrob Agents Chemother 65: e02000-20. https://doi.org/10.1128/AAC.02000-20.

23. Thomson KS. 2010. Extended-spectrum-b-lactamase, AmpC, and carbapenemase issues. J Clin Microbiol 48:1019–1025. https://doi.org/10.1128/ JCM.00219-10.

24. Yamada K, Aoki K, Nagasawa T, Imai W, Sasaki M, Murakami H, Morita T, Ishii Y, Tateda K. 2020. Carbapenem inactivation method using bacterial lysate and MOPS (LCIM): a very sensitive method for detecting carbapenemase-producing Acinetobacter species. J Antimicrob Chemother 75:2812–2816. https://doi.org/10.1093/jac/dkaa238.

25. Carvalhaes CG, Picao RC, Nicoletti AG, Xavier DE, Gales AC. 2010. Cloverleaf test (modified Hodge test) for detecting carbapenemase production in Klebsiella pneumoniae: be aware of false positive results. J Antimicrob Chemother 65:249–251. https://doi.org/10.1093/jac/dkp431.

26. Wachino J, Yoshida H, Yamane K, Suzuki S, Matsui M, Yamagishi T, Tsutsui A, Konda T, Shibayama K, Arakawa Y. 2011. SMB-1, a novel subclass B3 metallo-b-lactamase, associated with ISCR1 and a class 1 integron, from a carbapenem-resistant Serratia marcescens clinical isolate. Antimicrob Agents Chemother 55:5143–5149. https://doi.org/10.1128/AAC.05045-11.

27. Dabos L, Rodriguez CH, Nastro M, Dortet L, Bonnin RA, Famiglietti A, Iorga BI, Vay C, Naas T. 2020. LMB-1 producing Citrobacter freundii from Argentina, a novel player in the field of MBLs. Int J Antimicrob Agents 55:105857. https:// doi.org/10.1016/j.ijantimicag.2019.11.014.

28. Lange F, Pfennigwerth N, Hartl R, Kerschner H, Achleitner D, Gatermann SG, Kaase M. 2018. LMB-1, a novel family of class B3 MBLs from an isolate of Enterobacter cloacae. J Antimicrob Chemother 73:2331–2335. https://doi.org/10.1093/ jac/dky215.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る