リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Influence of the Diffusion Media Structure for the Bubble Distribution in Direct Formic Acid Fuel Cells」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Influence of the Diffusion Media Structure for the Bubble Distribution in Direct Formic Acid Fuel Cells

Konosuke Watanabe Takuto Araki 90378258 Takuya Tsujiguchi 10510894 Gen Inoue 40336003 横浜国立大学

2020.09.14

概要

Direct formic acid fuel cells (DFAFCs) have received considerable attention because they can generate a higher power density compared to other direct liquid fuel cells. However, when generated CO_2 bubbles are retained in the anode's porous transport layer (PTL), the performance of the DFAFCs deteriorates. The gas–liquid two-phase flow behavior within a PTL is not clear; therefore, in this work the power-generation characteristics of DFAFCs using two types of PTL, carbon paper and carbon cloth, were investigated. It was found that the maximum current density was approximately 60 mA cm^−2 higher with the carbon cloth than with the carbon paper. The CO_2 bubble distribution in the anode's PTLs was visualized by X-ray computed tomography and discuss the effects of the bubbles on the power-generation performance of DFAFCs. We found that interstices in a carbon-cloth PTL provided pathways for bubble migration and release to the channel, so that the bubbles did not deteriorate the power output. Bubble accumulation in a carbon-paper PTL led to a drop in power output, confirming that the structure of the PTL and the CO_2 bubbles affect the power-generation characteristics.

この論文で使われている画像

参考文献

1. B. C. Ong, S. K. Kamarudin, and S. Basri, Int. J. Hydrog. Energy, 42, 10142

(2017).

2. G. L. Soloveichik, Beilstein J. Nanotechnol., 5, 1399 (2014).

3. N. M. Aslam, M. S. Masdar, S. K. Kamarudin, and W. R. W. Daud, APCBEE

Procedia, 3, 33 (2012).

4. S. Ha, R. Larsen, Y. Zhu, and R. I. Masel, Fuel Cells, 4, 337 (2004).

5. Y. Zhu, Z. Khan, and R. I. Masel, J. Power Sources, 139, 15 (2005).

6. Y. Pan, R. Zhang, and S. L. Blair, Electrochem. Solid-State Lett., 12, B23 (2009).

7. W. L. Law, A. M. Platt, P. D. C. Wimalaratne, and S. L. Blair, J. Electrochem. Soc.,

156, B553 (2009).

8. Y. Zhou, J. Liu, J. Ye, Z. Zou, J. Ye, J. Gu, T. Yu, and A. Yang, Electrochim. Acta,

55, 5024 (2010).

9. T. Tsujiguchi, F. Matsuoka, Y. Hokari, Y. Osaka, and A. Kodama, Electrochim.

Acta, 197, 32 (2016).

10. N. Yamazaki, F. Matsuoka, T. Tsujiguchi, Y. Osaka, and A. Kodama, FCDIC Fuel

Cell Symp. Proc., 24, 239 (2017), (in Japanese).

11. R. Chenitz and J. P. Dodelet, ECS Trans., 16, 647 (2008).

12. S. Saeed, A. Pistono, J. Cisco, C. S. Burke, J. T. Clement, M. Mench, and C. Rice,

Fuel Cells, 17, 48 (2017).

13. Q. Liao, X. Zhu, X. Zheng, and Y. Ding, J. Power Sources, 171, 644 (2007).

14. A. Calabriso, D. Borello, L. Cedola, L. D. Zotto, and S. G. Santori, Energy

Procedia, 75, 1996 (2015).

15. W. Yuan, A. Wang, G. Ye, B. Pan, K. Tang, and H. Chen, Appl. Energy, 188, 431

(2017).

16. J. Liang, Y. Luo, S. Zheng, and D. Wang, J. Power Sources, 351, 86 (2017).

17. A. Calabriso, D. Borello, G. P. Romano, L. Cedola, L. D. Zotto, and S. G. Santori,

Appl. Energy, 185, 1245 (2017).

18. G. Beckman and W. P. Acker, Fuel cell membrane and system with integrated gas

separation, WO2002045196A2 (2002).

19. M. S. Defilippis, Bipolar plate having integrated gas-permeable membrane,

WO2003077342A2 (2003).

20. O. F. Selamet, U. Pasaogullari, D. Spernjak, D. S. Hussey, D. L. Jacobson, and

M. D. Mat, Int. J. Hydrog. Energy, 38, 5823 (2013).

21. C. Hartnig, I. Manke, J. Schloesser, P. Krüger, R. Kuhn, H. Riesemeier,

K. Wippermann, and J. Banhart, Electrochem. Commun., 11, 1559 (2009).

22. J. Sun, G. Zhang, T. Guo, K. Jiao, and X. Huang, Appl. Therm. Eng., 132, 140

(2018).

23. S. L. Ee and E. Birgersson, J. Electrochem. Soc., 158, B1224 (2011).

24. C. Xu, Y. L. He, T. S. Zhao, R. Chen, and Q. Ye, J. Electrochem. Soc., 153, A1358

(2006).

25. S. Jung, Y. Leng, and C. Y. Wang, Electrochim. Acta, 134, 35 (2014).

26. J. T. Gostick, M. W. Fowler, M. D. Pritzker, M. A. Ioannidis, and L. M. Behra,

J. Power Sources, 162, 228 (2006).

27. S. Simaafrookhteh, M. Shakeri, M. Baniassadi, and A. Alizadeh Sahraei,

“Microstructure Reconstruction and Characterization of the Porous GDLs for

PEMFC Based on Fibers Orientation Distribution.” Fuel Cells, 18, 160–72 (2018).

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る