リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「プロトン伝導形セラミック燃料電池のシステム効率およびプロトン・ホール輸送現象に関する数値解析」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

プロトン伝導形セラミック燃料電池のシステム効率およびプロトン・ホール輸送現象に関する数値解析

李 坤朋 横浜国立大学 DOI:info:doi/10.18880/00013922

2021.06.17

概要

Greenhouse gas emissions such as those of carbon dioxide, along with the increasing consumption of traditional carbon-based fossil fuels, impede eco-friendly and sustainable development meant to mitigate the effects of global warming. As fossil fuels are nonrenewable energy sources, it is considered that they will be exhausted within the current century. Obtaining an ideal energy source before the depletion of fossil fuels is quite difficult. Hydrogen is widely believed to be a feasible option from the standpoint of high energy density and can be produced via water electrolysis. Furthermore, the production of hydrogen fuel involves only water, which makes for a highly eco-friendly production process. However, the effective use of hydrogen will be a challenge in a future hydrogenled society.

Fuel cells present high potential with regard to the consumption of hydrogen fuel owing to low noise and relatively high efficiency, among other parameters. Compared to lowtemperature (~120 °C) fuel cells, such as proton-exchange membrane fuel cells, intermediate-/high-temperature (400-800 °C) fuel cells exhibit higher system efficiencies, whereby they are a good choice for achieving effective use of hydrogen fuel. Protonic ceramic fuel cells (PCFCs), an intermediate-temperature type, present high potential for future commercial usage, owing to their high fuel utilization and higher efficiency when compared to those of the commercialized high-temperature solid-oxide fuel cells (SOFCs). A detailed introduction of PCFCs in terms of their constituent materials, ion conductivity, and drawbacks are presented in Chapter 1.

For the commercial use of PCFCs, the PCFC system must operate at a high level of performance (i.e., system efficiency). To investigate the system performance, the most important part, i.e., PCFC stack (the cell itself), should be analyzed. PCFCs are usually observed to undergo current leakage induced via electron–hole conduction, leading to a decrease in performance. Current efficiency is usually used to express the current leakage influence. On the contrary, in SOFCs, the ion conductivity is only influenced by temperature, and the conductivities of defects including protons and electron holes are strongly affected by the gas partial pressures and temperature, because of which numerical simulations of PCFCs are much more difficult to achieve than those of SOFCs. The Nernst–Planck–Poisson (NPP) model is a good approach to use for revealing the gas partial pressures and temperature influences on PCFC performance, through which the integrated model is difficult to deal with. In Chapter 2, the calculation of this NPP model for PCFCs is introduced.

In Chapter 3, the calculation conditions for a BZYb20 electrolyte-based PCFC are proposed. Furthermore, the verification and validation of the numerical model are presented. Subsequently, defect conductivity distributions and current efficiencies are revealed under different operating temperatures, fuel utilizations, and gas flow directions. The power efficiency variation with electrolyte thickness is also presented.

In Chapter 4, an investigation of the system efficiencies of PCFC systems using H2- based fuel is provided, considering the influence of the gas fuel utilization and gas humidification rate, derived using the NPP model in Chapter 3, on the performance of PCFCs. The influence of other equipment, such as heaters, on system efficiency are also discussed.

Finally, a simple conclusion and discussion of the importance of this dissertation are presented in Chapter 5.

参考文献

[1]. Hannah Ritchie (2014) - "Energy". Published online at OurWorldInData.org. Retrieved from: https://ourworldindata.org/energy

[2]. U.S. Energy Information Administration. International Energy Outlook 2019. Retrieved from: https://www.eia.gov/outlooks/archive/ieo19/pdf/ieo2019.pdf

[3]. B. Bolin, B. R. Doos. Greenhouse effect. United States: N. p., 1989. Web.

[4]. A F. Bouwman. Soils and the greenhouse effect. United States: N. p., 1990. Web.

[5]. V. Ramanathan, Y. Feng. Air pollution, greenhouse gases and climate change: Global and regional perspectives, Atmospheric Environment, 43 (2009), 37-50.

[6]. United Nations Treaty Collection. Paris Agreement. Retrieved from: https://treaties.un.org/Pages/showDetails.aspx?objid=0800000280458f37&clang=_en

[7]. M. Götza, J. Lefebvre, F. Mörs, A. M. Koch, F. Graf, S. Bajohr, et al. Renewable Power-to-Gas: A technological and economic review. Renewable Energy, 85 (2016), 1371-90.

[8]. A. Varone, M. Ferrari. Power to liquid and power to gas: An option for the German Energiewende. Renewable and Sustainable Energy Reviews, 45 (2015), 207-18.

[9]. S. Clegg, P. Mancarella. Storing renewables in the gas network: modelling of power-to-gas seasonal storage flexibility in low-carbon power systems. IET Generation, Transmission & Distribution, 10 (2016), 566-75.

[10].T.M. Letcher. Storing Energy: with Special Reference to Renewable Energy Sources. United States: Elsevier, 2016.

[11].T. Liu, S.X. Hu, Z.L. Yu, J.J. Huang, J.Z. Li, Z.Q. Wang. Research of coal-direct chemical looping hydrogen generation with iron-based oxygen carrier modified by potassium. Int. J. Hydrogen Energy, 42 (2017) 11038-46.

[12].E. Czech, T. Troczynski. Hydrogen generation through massive corrosion of deformed aluminum in water. Int. J. Hydrogen Energy, 42 (2016) 1029-37.

[13].T. Bak, J. Nowotny, M. Rekas, C.C. Sorrell. Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects. Int. J. Hydrogen Energy, 27 (2002) 991-1022.

[14].G.C. Xie, K. Zhang, B.D. Guo, Q. Liu, L. Fang, J. R. G. Graphene‐Based Materials for Hydrogen Generation from Light‐Driven Water Splitting, Advanced Materials, 25 (2013), 3820-39.

[15].D. L..Stojić, M. P.Marčeta, S. P. Sovilj, Š. S.Miljanić. Hydrogen generation from water electrolysis—possibilities of energy saving. J. Power Sources, 118 (2003), 315-19.

[16].J. Ohi. Hydrogen energy cycle: An overview. J. Materials Research, 20 (2005), 3180–87.

[17].K. Bareiß, C. Rua, M. Möckl, T. Hamacher. Life cycle assessment of hydrogen from proton exchange membrane water electrolysis in future energy systems. Applied Energy, 237 (2019), 862-72.

[18].A. B. Stambouli. Fuel cells: The expectations for an environmental-friendly and sustainable source of energy. Renewable and Sustainable Energy Reviews, 15 (2011), 4507-20.

[19].E. Cetinkaya, I. Dincer, G.F. Naterer. Life cycle assessment of various hydrogen production methods. Int. J. Hydrogen Energy, 37 (2012) 2071-80.

[20].O. Z. Sharaf, M. F. Orhan. An overview of fuel cell technology: Fundamentals and applications. Renewable and Sustainable Energy Reviews, 32 (2014), 810-53.

[21].R. Steinberger-Wilckens , J. Radcliffe , N. Al-Mufachi , P. E. Dodds , A. Velazquez Abad , O. Jones and Z. Kurban , The role of hydrogen and fuel cells in delivering energy security for the UK , H2FC Supergen, London, UK, 2017.

[22].I. Staffell, D. Scamman, A.V. Abad, P. Balcombe, P. E. Dodds, P. Ekins, et al. The role of hydrogen and fuel cells in the global energy system. Energy & Environmental Science, 12 (2019), 463-91.

[23].R. O'Hayre, S.W. Cha, W. Colella, F. B. Prinz. Fuel Cell Fundamentals, 3rd Edition. United States, WILEY, 2016.

[24].H. Zhu, R. J. Kee. Thermodynamics of SOFC efficiency and fuel utilization as functions of fuel mixtures and operating conditions. J. Power Sources, 161 (2006), 957-64.

[25].R. Payne, J. Love, M. Kah. Generating Electricity at 60% Electrical Efficiency from 1 - 2 kWe SOFC Products. ECS Transactions, 25 (2009), 231-239.

[26].M. Dokiya. SOFC system and technology. Solid State Ionics, 152-153 (2002), 383-92.

[27].T. Ota, M. Koyama, C.J. Wen, K. Yamada, H. Takahashi. Object-based modeling of SOFC system: dynamic behavior of micro-tube SOFC. J. Power Sources, 118 (2003), 430-39.

[28].E. Fontell, T. Kivisaari, N. Christiansen, J.-B. Hansen, J.Pålsson. Conceptual study of a 250 kW planar SOFC system for CHP application. J. Power Sources, 131 (2004), 49-56.

[29].D. Penchini, G. Cinti, G. Discepoli, E. Sisani, U. Desideri. Characterization of a 100 W SOFC stack fed by carbon monoxide rich fuels. Int. J. Hydrogen Energy, 38 (2013), 525-31.

[30].A. Weber, B. Sauer, A. C. Müller, D. Herbstritt, E. I- Tiffée. Oxidation of H2, CO and methane in SOFCs with Ni/YSZ-cermet anodes. Solid State Ionics, 152-153 (2002), 543-50.

[31].J.-H. Koh, Y.-S. Yoo, J.-W. Park, H. S. Lim. Carbon deposition and cell performance of Ni-YSZ anode support SOFC with methane fuel. Solid State Ionics, 149 (2002), 157-66.

[32].K. Huang, J. B. Goodenough. Solid oxide fuel cell technology: Principles, performance and operations. United Kingdom: Woodhead Publishing, 2009.

[33].H. Iwahara, H. Esaka, H. Uchida, N. Maeda. Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ionics 3/4 (1981) 359-63.

[34].H. Uchida, H. Yoshikawa, H. Iwahara. Fromation of protons in SrCeO3-Based proton conducting oxides. Part 1. Gas Evolution and absorption in doped SrCeO3 at high temperature. Solid State Ionics 34 (1989) 103-10.

[35].S. Hossain, A. M. Abdalla, S. N. B. Jamain, J. H. Zaini, A. K. Azad. A review on proton conducting electrolytes for clean energy and intermediate temperature-solid oxide fuel cells. Renewable and Sustainable Energy Reviews 79 (2017) 750-64.

[36].M. Ni, M. K. H. Leung, D. Y. C. Leung. Mathematical modelling of proton-conducting solid oxide fuel cells and comparison with oxygen-ion-conducting counterpart. Fuel Cells 7 (2007) 269-78.

[37].M. Ni. The effect of electrolyte type on performance of solid oxide fuel cells running on hydrocarbon fuels. J. Hydrogen Energy 38 (2013) 2846-58.

[38].H. Liu, Z. Akhtar, P. Li, K. Wang. Mathematical modelling analysis and optimization of key design parameters of proton-conductive solid oxide fuel cells. Energies 7 (2014) 137-90.

[39].K. Bae, D. H. Kim, H. J. Choi, J. Son, J. H. Shim. High-performance protonic ceramic fuel cell with 1µm Thick Y:Ba(Ce,Zr)O3 Electrolytes. Advanced Energy Materials 8 (2018) 1801315.

[40].Y. Lin, R. Ran, Y. Guo, W. Zhou, R, Cai, J, Wang, Z. Shao. Proton-conducting fuel cells operating on hydrogen, ammonia and hydrazine at intermediate temperatures. J. Hydrogen Energy 35 (2010) 2637-42.

[41].K. J. Albrecht, D. Duan, R. P. O’Hayre, R. J. Braun. Modelling intermediate temperature protonic ceramic fuel cells. ECS Transactions, 68 (2015) 3165-75.

[42].J. Zhang, L. Lei, D. Liu, F. Zhao, M. Ni, F. Chen. Mathematical modeling of a proton-conducting solid oxide fuel cell with current leakage. J. Power Sources. 400 (2018) 333-40.

[43].E. Fabbri, D. Pergolesi, E. Traversa. Materials challenges toward proton-conducting oxide fuel cells: a critical review. Chemical Society Reviews 39 (2010) 4355-69.

[44].J. Dailly, M. Ancelin, M. Marrony. Long term testing of BCZY-based protonic ceramic fuel cell PCFC: Micro-generation profile and reversible production of hydrogen and electricity. Solid State Ionics, 306 (2017), 69-75.

[45].H. Zhu, R. J. Kee. Modeling Protonic-Ceramic Fuel Cells with Porous Composite Electrodes in a Button-Cell Configuration. J. Electrochem. Soc., 164 (2017), F1400-11.

[46].T. Kawamura. Prediction of current efficiency distribution inside the proton-conducting electrolyte using Nernst-Planck model (Master’s thesis). Yokohama National University, Yokohama, Japan, 2020.

[47].Y. Kobayashi, Y. Ando, T. Kabata, M. Nishiura, K. Tomida, N. Matake. Extremely Highefficiency Thermal Power System-Solid Oxide Fuel Cell (SOFC) Triple Combined-cycle System. Mitsubishi Heavy Industries Technical Review, 48 (2011), 9-15.

[48].D. Klotz, A. Leonide, A. Weber, E.Ivers-Tiffée. Electrochemical model for SOFC and SOEC mode predicting performance and efficiency. Int. J. Hydrogen Energy, 39 (2014) 20844-49.

[49].S.H. Chan, H.K. Ho, Y. Tian. Modelling of simple hybrid solid oxide fuel cell and gas turbine power plant. J. Power Sources, 109 (2002), 111-20.

[50].U.M. Damo, M.L. Ferrari, A. Turan, A.F. Massardo. Solid oxide fuel cell hybrid system: A detailed review of an environmentally clean and efficient source of energy. Energy, 168 (2019), 235-46.

[51].W. G. Coors. Protonic ceramic fuel cells for high-efficiency operation with methane. J. Power Sources, 118 (2003), 150-6.

[52].W. G. Coors. Steam Reforming and Water-Gas Shift by Steam Permeation in a Protonic Ceramic Fuel Cell. J. Electrochem. Soc., 151 (2004), A994-7.

[53].K. J. Albrecht, C. Duan, R. O’Hayre, R. J. Braun. Modeling Intermediate Temperature Protonic Ceramic Fuel Cells. ECS Transactions, 68 (2015), 3165-75.

[54].H. Ding, L. Q. Le, N. P. Sullivan. Methane-Fueled Proton-Conducting Ceramic Fuel Cell Stacks. ECS Transactions, 78 (2017), 1941-44.

[55].L. Q. Le, N. P. Sullivan. Internal Reforming of Methane Fuel within Proton-Conducting Ceramic Anode Supports. ECS Transactions, 78 (2017), 2505-09.

[56].Y. Okuyama, S. Kawano, G. Sakai, N. Matsunaga, Y. Mizutani. A Direct Methane Fuel Cell with Double-Layered Electrolyte Using Proton Conducting Oxide. ECS Transactions, 78 (2017), 1953-61

[57].C. Duan, J. Tong, M. Shang, S. Nikodemski, M. Sanders, S. Ricote, et al. Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science, 349 (2015), 1321-26.

[58].D.-K. Lim, H.-N. Im, B. Singh, S.-J. Song. Investigations on Electrochemical Performance of a Proton-Conducting Ceramic-Electrolyte Fuel Cell with La0.8Sr0.2MnO3 Cathode. J. Electrochem. Soc., 162 (2015), F547-54

[59].A. Dubois, S. Ricote, R. J. Braun. Benchmarking the expected stack manufacturing cost of next generation, intermediate-temperature protonic ceramic fuel cells with solid oxide fuel cell technology. J. Power Sources, 369 (2017), 65-77

[60].A. Tarutin, A. Kasyanova, J. Lyagaeva, G. Vdovin, D. Medvedev. Towards high-performance tubular-type protonic ceramic electrolysis cells with all-Ni-based functional electrodes. J. Energy Chemistry. 40 (2020), 65-74.

[61].R. Haugsrud. High Temperature Proton Conductors - Fundamentals and Functionalities. Diffusion Foundations, vol. 8, Trans Tech Publications, Ltd., July 2016, pp. 31–79.

[62].Y. Mneng, J. G. Zhao, J. Amoroso, J. Tong, K. S. Brinkman. Review: recent progress in lowtemperature proton-conducting ceramics. J. Materials Science, 54 (2019), 9291-312.

[63].K. Nomura, H. Kageyama. Neutron diffraction study of LaScO3-based proton conductor. Solid State Ionics, 262 (2014), 841-4.

[64].X. Xiong. Promotional Effect of Molten Carbonates on Proton Conductivity and Oxygen Reduction Reaction – An Experimental and Computational Study. (Doctoral dissertation). University of South Carolina, Columbia, United States, 2017.

[65].E. Kalinina, A. Kolchugin, K. Shubin, A. Farlenkov, E. Pikalova. Features of Electrophoretic Deposition of a Ba-Containing Thin-Film Proton-Conducting Electrolyte on a Porous Cathode Substrate. Appl. Sci., 10 (2020), 6535.

[66].W. Wang, M. Mogensen. High-performance lanthanum-ferrite-based cathode for SOFC. Solid State Ionics, 176 (2005), 457-62.

[67].M. R. Cesário, D. A. Macedo. Functional Materials for Solid Oxide Fuel Cells: Processing, Microstructure and Performance (Frontiers in Ceramic Science). Bentham Science Publishers. (2017).

[68].M. Oishi, S. Akoshima, K. Yashiro, K. Sato. Defect structure analysis of B-site doped perovskitetype proton conducting oxide BaCeO3 Part 1: The defect concentration of BaCe0.9M0.1O(3-δ) (M=Y and Yb). Solid State Inoics, 180 (2009), 127-31.

[69].N. Bonanos, F. W. Poulsen. Consideration of defect equilibria in high temperature protonconducting cerates. J. Materials Chemistry, 9 (1999), 431-4.

[70].Z. Zhu, S. Wang. Investigation on samarium and yttrium co-doping barium zirconate proton conductors for protonic ceramic fuel cells. Ceramic International, 45 (2019), 19289-96.

[71].F. L.-Joud, G. Gauthier, J. Mougin. Current status of proton-conducting solid oxide fuel cells development. J. Applied Electrochemistry, 39 (2009), 535-43.

[72].H. Iwahara. Proton conducting ceramics and their applications. Solid State Ionics, 86-88 (1996), 9-15.

[73].K.D. Kreuer. Proton-Conducting Oxides. Annual Review of Materials Research, 33 (2003), 333- 59.

[74].T. Miyashita. Theoretical verification necessity of leakage currents using Sm doped ceria electrolytes in SOFCS. Open Mater Sci J, (2009), 33-9.

[75].A. Selimovic, M. Kemm, T. Torisso, M. Assadi. Steady state and transient thermal stress analysis in planar solid oxide fuel cells. J Power Sources, (2005), 463-9.

[76].L. Liu, G.Y. Kim, A. Chandra. Modelling of thermal stresses and lifetime prediction of planar solid oxide fuel cell under thermal cycling conditions. J Power Sources, (2010); 2310-8.

[77].C.S. Montros, H. Yokokawa, M. Dokiya. Thermal stresses in planar solid oxide fuel cells due to thermal expansion differences. J Br Ceram Trans, (2002), 85-93.

[78].Y. Okuyama, K. Okuyama, Y. Mizutani, etc. Proton transport properties of L 0.9S 0. Yb0.8I 0. δ and its application to proton ceramic fuel cell. J. Hydrogen Energy, 39 (2014), 20829-36.

[79].J. Newman. Electrochemical Systems. Prentice-Hall, Inc., Englewood Cliffs, NJ, second edition, 1991.

[80].T. Somekawa, Y. Matsuzaki, Y. Tachikawa, etc. Physicochemical properties of proton-conductive B (Z 0. 0.7Y0. Yb0. ) δ solid electrolyte in terms of electrochemical performance of solid oxide fuel cells. J. Hydrogen Energy, 41 (2016), 17539-47.

[81].E. Vøllestad, H. Y. Zhu, R. J. Kee. Interpretation of defect and gas-phase fluxes through mixedconducting ceramics using Nernst-Planck-Poisson and integral formulations. J. Electrochem. Soc., 161 (2014), F114-24.

[82].H. Y. Zhu, R. J. Kee. Membrane polarization in mixed-conducting ceramic fuel cells and electrolyzers. J. Hydrogen Energy, 41 (2016), 2931-43

[83].S. J. Song, E. D. Wachsman, S. E. Dorris, U. Balachandran. Defect structure and n-type electrical properties of SrCe0.95Eu0.05O3-δ. J. Electrochem. Soc., 150 (2003), A1484-90.

[84].J. S. Park, J. H. Lee, H. W. Lee, B. K. Kim. Estimation of the protonic concentration and mobility in Ba(Zr0.81Yb0.15Zn0.04)O3-δ ceramic. Solid State Ionics, 192 (2011), 88-92.

[85].H. Y. Zhu, R. J. Braun, R. J. Kee. Thermodynamic analysis of energy efficiency and fuel utilization in protonic-ceramic fuel cells with planar co-flow. J. Electrochem. Soc., 165 (2018), F942-50.

[86].XF. Jin, R. E. White, K. Huang. Simulating charge transport in solid oxide mixed ionic and electronic conductors: Nernst-Planck theory vs modified Fick’s Law. J. Electrochem. Soc., 163 (2016), A2702-19.

[87].L. P. Putilov, A. K. Demin, V. I. Tsidilkovski, P. Tsiakaras. Theoretical modelling of the gas humidification effect on the characteristics of proton ceramic fuel cell. J. Applied Energy, 242 (2019), 1448-59.

[88].L. P. Putilov, V. I. Tsidilkovski, A. K. Demin. Revealing the effect of the cell voltage and external conditions on the characteristics of proton ceramic fuel cells. J. Mater. Chem. A, 8 (2020), 12641- 56.

[89].Peters, Christoph. Grain-size effects in nanoscaled electrolyte and cathode thin films for solid oxide fuel cells (SOFC). Universitätsverlag Karlsruhe, Karlsruhe, 2009.

[90].T. Sokalski, P. Lingenfelter, A. Lewenstam. Numerical solution of the coupled Nernst-Planck and Poisson equations for liquid junction and ion selective membrane potentials. J. Phys. Chem. B, 107 (2003), 2443-52.

[91].J. Newman, K. E. Thomas-Alyea. Electrochemical systems. 3rd ed. New York: Wiley; 2004.

[92].E. Lees, S. Rokkam, S. Shanbhag, M. Gunzburger. The electroneutrality constraint in nonlocal models. J. Chem. Phys. 147 (2017), 124102

[93].S. V. Patankar. Numerical Heat Transfer and Fluid Flow. CRC Press, 1980.

[94].K. T. Chu. Asymptotic Analysis of Extreme Electrochemical Transport. (Doctoral thesis). Massachusetts Institute of Technology, Cambridge, USA, 2005.

[95].I. Rubinstein. Electro-Diffusion of Ions. SIAM Studies in Applied Mathematics, SIAM, Philadelphia, PA, 1990.

[96].K. Leonard, Y. Okuyama, Y. Takamura, Y. S. Lee, K. Miyazaki, M. E. Ivanova, et al. Efficient intermediate-temperature steam electrolysis with Y: SrZrO3–SrCeO3 and Y: BaZrO3–BaCeO3 proton conducting perovskites. J. Materials Chemistry A, 6 (39) 2018.

[97].Y. Okuyama, N. Ebihara, K. Okuyama, Y. Mizutani. Improvement of protonic ceramic fuel cells with thin film BCZY electrolyte. ECS Transactions, 68 (2015), 2545-53.

[98].E. Bevillon, G. Dezanneau, G. Geneste. Oxygen incorporation in acceptor-doped perovskites. Physical. Review B, 83 (2011), 174101-06.

[99].P. G. Sundell, M. E. Bjorketun, G. Wahnstrom. Thermodynamics of doping and vacancy formation in BaZrO3 perovskite oxide from density functional calculations, Phys. Rev. B, 73 (2006), 104112-21.

[100]. L. P. Putilov, V. I. Tsidilkovski. The role of deep acceptor centers in the oxidation of acceptor-doped wideband-gap perovskites ABO3. J. Solid State Chemistry, 247 (2017) 147–55.

[101]. KP. Li, T. Araki, T. Kawamura, A. Ota, Y. Okuyama. Numerical analysis of current efficiency distributions in a protonic ceramic fuel cell using Nernst-Planck-Poisson model. Int. J. Hydrogen Energy, 45 (2020), 34139-149.

[102]. T. Ochiai, H. Nakajima, T. Karimata, T. Kitahara, K. Ito, Y. Ogura, et al. In-Situ analysis of the in-plane current distributions in an electrolyte-supported planar solid oxide fuel cell by segmented electrodes. ECS Transactions, 75 (2017), 91-98.

[103]. P. Metzger, K. A. Friedrich, G. Schiller, H. Müller-Steinhagen. Investigation of Locally Resolved SOFC Characteristics along the Flow Path. ECS Transactions, 7 (2007), 1841-47.

[104]. T. Koshiyama, H. Nakajima, T. Karimata, T. Kitahara, K. Ito, S. Masuda, et al. Direct current distribution measurement of an electrolyte-supported planar solid oxide fuel cell under the rib and channel by segmented electrodes. ECS Transactions, 68 (2015), 2217-26.

[105]. T. Onishi, T. Uda. Calculation of oxygen potential profile in proton-hole mix conductive electrolyte and its application for evaluation of practical cells. Electrochemistry, 87 (2019), 162- 74.

[106]. M. Mori, KP. Li, T. Araki. Issues of Protonic Ceramic Fuel Cell Introduction as Residential Cogeneration Systems in Hydrogen Economy (in Japanese). J. Fuel Cell Technology, 19 (2020), 32-8.

[107]. KP. Li, M. Mori, T. Araki. Methane-Hydrogen mixed Gas Production Systems with SOEC and the Addition Potential of the Production Gas to City Gas 13A (in Japanese). J. Jpn. Inst. Energy, 99 (2020), 20-7.

[108]. KP. Li, T. Araki, M. Mori. Efficiency Evaluation of Hydrogen Production Systems with Proton/Oxide-ion Conducting Solid Oxide Electrolysis Cells by Calculation (in Japanese). J. Fuel Cell Technology, 20 (2020), 76-83.

[109]. K. Agematsu. Fuel cell power generation system and thermal calculation (in Japanese). Ohmsha, Japan, 2004.

[110]. M.Suzuki, Y.Takuwa, S. Inoue, and K.Higaki. Durability Verification of Residential SOFC CHP System. ECS Transactions, 57 (2013), 309-14

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る