リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Population Dynamics in the Biogenesis of Single-/Multi-Layered Membrane Vesicles Revealed by Encapsulated GFP-Monitoring Analysis」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Population Dynamics in the Biogenesis of Single-/Multi-Layered Membrane Vesicles Revealed by Encapsulated GFP-Monitoring Analysis

Koh, Sangho Noda, Shuhei Taguchi, Seiichi 神戸大学

2023.09

概要

Various generations of membrane vesicles (MV) have been observed in Escherichia coli in terms of triggering events and populations of single-layered (s)/multi-layered (m) forms. Previously, we proposed a novel mechanism for MV generation triggered by the intracellular accumulation of biopolyester polyhydroxybutyrate (PHB). This was designated as the Polymer Intracellular Accumulation-triggered system for Membrane Vesicle Production (PIA-MVP). Herein, we attempted to determine the conditions for the change in the population between s-MV and m-MV using glucose concentration-dependent PIA-MVP. PIA-MVP was established using the good correlation between the glucose concentration-dependent PHB accumulation and MV generation. Thus, we assumed the presence of a critical glucose concentration could determine the population ratio of s-MV to m-MV, indicating that s-MV generation is a dominant component in the extracellular environment. Cytoplasmic green fluorescent protein (GFP) was used to evaluate the glucose concentration, enabling the selective generation of s-MV. The glucose concentration was determined to be 15 g/L to satisfy this purpose under the culture conditions. In conclusion, we established a biological system allowing us to selectively generate both single- and multi-layered MVs based on PIA-VIP encapsulation of GFP, providing a versatile toolkit to gain insights into the MV generation mechanism and achieve progress in various engineering applications.

この論文で使われている画像

参考文献

1.

2.

3.

Toyofuku, M.; Nomura, N.; Eberl, L. Types and origins of bacterial membrane vesicles. Nat. Rev. Microbiol. 2019, 17, 13–24.

[CrossRef] [PubMed]

Schewechheimer, C.; Kuehn, M.J. Outer-membrane vesicles from gram-negative bacteria: Biogenesis and functions. Nat. Rev.

Microbiol. 2015, 13, 605–619. [CrossRef] [PubMed]

Tashiro, Y. Bacterial membrane vesicles with multiple lipid bilayers; vesicles harboring organelle-like structures. Biosci. Biotechnol.

Biochem. 2022, 86, 967–973. [CrossRef] [PubMed]

Appl. Microbiol. 2023, 3

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

1036

Kadurugamuwa, J.L.; Beveridge, T.J. Virulence factors are released from Pseudomonus aerugiosa in association with membrane

vesicles during normal growth and exposure to gentamaicin: A novel mechanism of enzyme secretion. J. Bacteriol. 1995, 177,

3998–4008. [CrossRef] [PubMed]

Hirayama, S.; Nakao, R. Glycine significantly enhances bacterial membrane vesicle production: A powerful approach for isolation

of LPS-reduced membrane vesicles of probiotic Escherichia coli. Microb. Biotechnol. 2020, 13, 1162–1178. [CrossRef] [PubMed]

Schewechheimer, C.; Rodriguez, D.L.; Kuehn, M.J. NlpI-mediated modulation of outer membrane vesicle production through

peptidoglycan dynamics in Escherichia coli. Microbiol. Open 2015, 4, 375–389. [CrossRef] [PubMed]

Ojima, Y.; Sawabe, T.; Nakagawa, M.; Tahara, Y.O.; Miyata, M.; Azuma, M. Aberrant membrane structures in hypervesiculating

Escherichia coli strain ∆mlaE∆nlpI visualized by electron microscopy. Front. Microbiol. 2021, 12, 706525. [CrossRef] [PubMed]

Bernadac, A.; Gavioli, M.; Lazzaroni, J.; Raina, S.; Lloubès, R. Escherichia coli tol-pal mutants form outer membrane vesicles. J.

Bacteriol. 1998, 180, 4872–4878. [CrossRef] [PubMed]

Turnbull, L.; Toyofuku, M.; Hynen, A.L.; Kurosawa, M.; Pessi, G.; Petty, N.K.; Osvath, S.R.; Cárcamo-Oyarce, G.; Gloag, E.S.;

Shimoni, R.; et al. Explosive cell lysis as a mechanism for the biogenesis of bacterial membrane vesicles and biofilms. Nat.

Commun. 2016, 7, 11220. [CrossRef] [PubMed]

Koh, S.; Sato, M.; Yamashina, K.; Usukura, Y.; Toyofuku, M.; Nomura, N.; Taguchi, S. Controllable secretion of multilayer vesicles

driven by microbial polymer accumulation. Sci. Rep. 2022, 12, 3393. [CrossRef] [PubMed]

Obruca, S.; Sedlacek, P.; Slaninova, E.; Friz, I.; Daffert, C.; Meixner, K.; Sedrlova, Z.; Koller, M. Novel unexpected functions of

PHA granules. Appl. Microbiol. Biotechnol. 2020, 104, 4795–4810. [CrossRef] [PubMed]

Steinbüchel, A.; Hein, S. Biochemical and molecular basis of microbial synthesis of polyhydroxyalkanoates in microorganisms.

Adv. Biochem. Eng. Biotechnol. 2001, 71, 81–123. [PubMed]

Nduko, J.M.; Taguchi, S. Microbial production of biodegradable lactate-based polymers and oligomeric building blocks from

renewable and waste resources. Front. Bioeng. Biotechnol. 2021, 8, 618077. [CrossRef] [PubMed]

Nagao, Y.; Koh, S.; Taguchi, S.; Shimada, T. Cell-growth phase-dependent promotor replacement approach for improved

poly(lactate-co-3-hydroxybutyrate) production in Escherichia coli. Microb. Cell Fact. 2023, 22, 131. [CrossRef] [PubMed]

Baba, T.; Ara, T.; Hasegawa, M.; Takai, Y.; Okumura, Y.; Baba, M.; Datsenko, K.A.; Tomita, M.; Wanner, B.L.; Mori, H. Construction

of Escherichia coli K-12 In-frame, single-gene knockout mutants: The Keio collection. Mol. Syst. Biol. 2006, 2, 2006.0008. [CrossRef]

[PubMed]

Kesty, N.C.; Kuehn, M.J. Incorporation of heterologous outer membrane and periplasmic proteins into Escherichia coli outer

membrane vesicles. J. Biol. Chem. 2004, 279, 2069–2076. [CrossRef] [PubMed]

Ojima, Y.; Sawabe, T.; Konami, K.; Azuma, M. Construction of hypervesiculation Eshcherichia coli strains and application for

secretory protein production. Biotechnol. Bioeng. 2019, 117, 701–709. [CrossRef] [PubMed]

Roier, S.; Zingl, F.G.; Cakar, F.; Durakovic, S.; Kohl, P.; Eichmann, T.O.; Klug, L.; Gadermaier, B.; Weinzerl, K.; Prassl, R.; et al.

A novel mechanism for the biogenesis of outer membrane vesicles in gram-negative bacteria. Nat. Commun. 2016, 7, 10515.

[CrossRef] [PubMed]

Jendrossek, D.; Slchow, O.; Hoppert, M. Poly(3-hydroxybutyrate) granules at the early stages of formation are localized close to

the cytoplasmic membrane in Caryphanon latum. Appl. Environ. Microbiol. 2007, 73, 586–593. [CrossRef] [PubMed]

Bresan, S.; Sznajder, A.; Hauf, W.; Forchhammer, K.; Pfieffer, D.; Jendrossek, D. Polyhydroxyalkanoate (PHA) granules have no

phospholipids. Sci. Rep. 2016, 6, 26612. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る