リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Hepatitis C Virus-Induced ROS/JNK Signaling Pathway Activates the E3 Ubiquitin Ligase Itch to Promote the Release of HCV Particles via Polyubiquitylation of VPS4A」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Hepatitis C Virus-Induced ROS/JNK Signaling Pathway Activates the E3 Ubiquitin Ligase Itch to Promote the Release of HCV Particles via Polyubiquitylation of VPS4A

Deng, Lin Liang, Yujiao Ariffianto, Adi Matsui, Chieko Abe, Takayuki Muramatsu, Masamichi Wakita, Takaji Maki, Masatoshi Shibata, Hideki Shoji, Ikuo 神戸大学

2022.03.23

概要

We previously reported that hepatitis C virus (HCV) infection activates the reactive oxygen species (ROS)/c-Jun N-terminal kinase (JNK) signaling pathway. However, the roles of ROS/JNK activation in the HCV life cycle remain unclear. We sought to identify a novel role of the ROS/JNK signaling pathway in the HCV life cycle. Immunoblot analysis revealed that HCV-induced ROS/JNK activation promoted phosphorylation of Itch, a HECT-type E3 ubiquitin ligase, leading to activation of Itch. The small interfering RNA (siRNA) knockdown of Itch significantly reduced the extracellular HCV infectivity titers, HCV RNA, and HCV core protein without affecting intracellular HCV infectivity titers, HCV RNA, and HCV proteins, suggesting that Itch is involved in the release of HCV particles. HCV-mediated JNK/Itch activation specifically promoted polyubiquitylation of an AAA-type ATPase, VPS4A, but not VPS4B, required to form multivesicular bodies. Site-directed mutagenesis revealed that two lysine residues (K23 and K121) on VPS4A were important for VPS4A polyubiquitylation. The siRNA knockdown of VPS4A, but not VPS4B, significantly reduced extracellular HCV infectivity titers. Coimmunoprecipitation analysis revealed that HCV infection specifically enhanced the interaction between CHMP1B, a subunit of endosomal sorting complexes required for transport (ESCRT)-III complex, and VPS4A, but not VPS4B, whereas VPS4A K23R/K121R greatly reduced the interaction with CHMP1B. HCV infection significantly increased ATPase activity of VPS4A, but not VPS4A K23R/K121R or VPS4B, suggesting that HCV-mediated polyubiquitylation of VPS4A contributes to activation of VPS4A. Taken together, we propose that the HCV-induced ROS/JNK/Itch signaling pathway promotes VPS4A polyubiquitylation, leading to enhanced VPS4A-CHMP1B interaction and promotion of VPS4A ATPase activity, thereby promoting the release of HCV particles. IMPORTANCE The ROS/JNK signaling pathway contributes to liver diseases, including steatosis, metabolic disorders, and hepatocellular carcinoma. We previously reported that HCV activates the ROS/JNK signaling pathway, leading to the enhancement of hepatic gluconeogenesis and apoptosis induction. This study further demonstrates that the HCV-induced ROS/JNK signaling pathway activates the E3 ubiquitin ligase Itch to promote release of HCV particles via polyubiquitylation of VPS4A. We provide evidence suggesting that HCV infection promotes the ROS/JNK/Itch signaling pathway and ESCRT/VPS4A machinery to release infectious HCV particles. Our results may lead to a better understanding of the mechanistic details of HCV particle release.

この論文で使われている画像

参考文献

20. Das M, Garlick DS, Greiner DL, Davis RJ. 2011. The role of JNK in the development of hepatocellular carcinoma. Genes Dev 25:634–645. https://doi

.org/10.1101/gad.1989311.

21. Morton S, Davis RJ, McLaren A, Cohen P. 2003. A reinvestigation of the

multisite phosphorylation of the transcription factor c-Jun. EMBO J 22:

3876–3886. https://doi.org/10.1093/emboj/cdg388.

22. Fuchs SY, Adler V, Pincus MR, Ronai Z. 1998. MEKK1/JNK signaling stabilizes and activates p53. Proc Natl Acad Sci U S A 95:10541–10546. https://

doi.org/10.1073/pnas.95.18.10541.

23. Noguchi K, Kitanaka C, Yamana H, Kokubu A, Mochizuki T, Kuchino Y.

1999. Regulation of c-Myc through phosphorylation at Ser-62 and Ser-71

by c-Jun N-terminal kinase. J Biol Chem 274:32580–32587. https://doi

.org/10.1074/jbc.274.46.32580.

24. Bernassola F, Karin M, Ciechanover A, Melino G. 2008. The HECT family of

E3 ubiquitin ligases: multiple players in cancer development. Cancer Cell

14:10–21. https://doi.org/10.1016/j.ccr.2008.06.001.

25. Zhu K, Shan Z, Chen X, Cai Y, Cui L, Yao W, Wang Z, Shi P, Tian C, Lou J, Xie

Y, Wen W. 2017. Allosteric auto-inhibition and activation of the Nedd4

family E3 ligase Itch. EMBO Rep 18:1618–1630. https://doi.org/10.15252/

embr.201744454.

26. Gallagher E, Gao M, Liu YC, Karin M. 2006. Activation of the E3 ubiquitin

ligase Itch through a phosphorylation-induced conformational change.

Proc Natl Acad Sci U S A 103:1717–1722. https://doi.org/10.1073/pnas

.0510664103.

27. Gastaminza P, Dryden KA, Boyd B, Wood MR, Law M, Yeager M, Chisari FV.

2010. Ultrastructural and biophysical characterization of hepatitis C virus

particles produced in cell culture. J Virol 84:10999–11009. https://doi.org/

10.1128/JVI.00526-10.

28. Aydin Y, Chatterjee A, Chandra PK, Chava S, Chen W, Tandon A, Dash A,

Chedid M, Moehlen MW, Regenstein F, Balart LA, Cohen A, Lu H, Wu T,

Dash S. 2017. Interferon-alpha-induced hepatitis C virus clearance

restores p53 tumor suppressor more than direct-acting antivirals. Hepatol

Commun 1:256–269. https://doi.org/10.1002/hep4.1025.

29. Su WC, Chen YC, Tseng CH, Hsu PW, Tung KF, Jeng KS, Lai MM. 2013.

Pooled RNAi screen identifies ubiquitin ligase Itch as crucial for influenza

A virus release from the endosome during virus entry. Proc Natl Acad Sci

U S A 110:17516–17521. https://doi.org/10.1073/pnas.1312374110.

30. Han Z, Sagum CA, Bedford MT, Sidhu SS, Sudol M, Harty RN. 2016. ITCH E3

ubiquitin ligase interacts with Ebola virus VP40 to regulate budding. J

Virol 90:9163–9171. https://doi.org/10.1128/JVI.01078-16.

31. Lee CP, Liu GT, Kung HN, Liu PT, Liao YT, Chow LP, Chang LS, Chang YH,

Chang CW, Shu WC, Angers A, Farina A, Lin SF, Tsai CH, Bouamr F, Chen

MR. 2016. The ubiquitin ligase Itch and ubiquitination regulate BFRF1mediated nuclear envelope modification for Epstein-Barr virus maturation. J Virol 90:8994–9007. https://doi.org/10.1128/JVI.01235-16.

32. Welsch S, Muller B, Krausslich HG. 2007. More than one door - budding of

enveloped viruses through cellular membranes. FEBS Lett 581:2089–2097.

https://doi.org/10.1016/j.febslet.2007.03.060.

33. Votteler J, Sundquist WI. 2013. Virus budding and the ESCRT pathway. Cell

Host Microbe 14:232–241. https://doi.org/10.1016/j.chom.2013.08.012.

34. Garrus JE, von Schwedler UK, Pornillos OW, Morham SG, Zavitz KH, Wang HE,

Wettstein DA, Stray KM, Cote M, Rich RL, Myszka DG, Sundquist WI. 2001.

Tsg101 and the vacuolar protein sorting pathway are essential for HIV-1 budding. Cell 107:55–65. https://doi.org/10.1016/s0092-8674(01)00506-2.

35. Feng Z, Hensley L, McKnight KL, Hu F, Madden V, Ping L, Jeong SH, Walker

C, Lanford RE, Lemon SM. 2013. A pathogenic picornavirus acquires an envelope by hijacking cellular membranes. Nature 496:367–371. https://doi

.org/10.1038/nature12029.

36. Wirblich C, Bhattacharya B, Roy P. 2006. Nonstructural protein 3 of bluetongue virus assists virus release by recruiting ESCRT-I protein Tsg101. J

Virol 80:460–473. https://doi.org/10.1128/JVI.80.1.460-473.2006.

37. Watanabe T, Sorensen EM, Naito A, Schott M, Kim S, Ahlquist P. 2007.

Involvement of host cellular multivesicular body functions in hepatitis B

virus budding. Proc Natl Acad Sci U S A 104:10205–10210. https://doi.org/

10.1073/pnas.0704000104.

38. Coller KE, Heaton NS, Berger KL, Cooper JD, Saunders JL, Randall G. 2012.

Molecular determinants and dynamics of hepatitis C virus secretion. PLoS

Pathog 8:e1002466. https://doi.org/10.1371/journal.ppat.1002466.

39. Lai CK, Jeng KS, Machida K, Lai MM. 2010. Hepatitis C virus egress and

release depend on endosomal trafficking of core protein. J Virol 84:

11590–11598. https://doi.org/10.1128/JVI.00587-10.

40. Babst M, Wendland B, Estepa EJ, Emr SD. 1998. The Vps4p AAA ATPase

regulates membrane association of a Vps protein complex required for

March 2022 Volume 96 Issue 6 e01811-21

Journal of Virology

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

normal endosome function. EMBO J 17:2982–2993. https://doi.org/10

.1093/emboj/17.11.2982.

Merrill SA, Hanson PI. 2010. Activation of human VPS4A by ESCRT-III proteins reveals ability of substrates to relieve enzyme autoinhibition. J Biol

Chem 285:35428–35438. https://doi.org/10.1074/jbc.M110.126318.

Norgan AP, Davies BA, Azmi IF, Schroeder AS, Payne JA, Lynch GM, Xu Z,

Katzmann DJ. 2013. Relief of autoinhibition enhances Vta1 activation of

Vps4 via the Vps4 stimulatory element. J Biol Chem 288:26147–26156.

https://doi.org/10.1074/jbc.M113.494112.

Lai CK, Saxena V, Tseng CH, Jeng KS, Kohara M, Lai MM. 2014. Nonstructural protein 5A is incorporated into hepatitis C virus low-density particle

through interaction with core protein and microtubules during intracellular transport. PLoS One 9:e99022. https://doi.org/10.1371/journal.pone

.0099022.

Hansen MD, Johnsen IB, Stiberg KA, Sherstova T, Wakita T, Richard GM,

Kandasamy RK, Meurs EF, Anthonsen MW. 2017. Hepatitis C virus triggers

Golgi fragmentation and autophagy through the immunity-related

GTPase M. Proc Natl Acad Sci U S A 114:E3462–E3471. https://doi.org/10

.1073/pnas.1616683114.

Shrivastava S, Devhare P, Sujijantarat N, Steele R, Kwon YC, Ray R, Ray RB.

2016. Knockdown of autophagy inhibits infectious hepatitis C virus

release by the exosomal pathway. J Virol 90:1387–1396. https://doi.org/

10.1128/JVI.02383-15.

Buonocore L, Blight KJ, Rice CM, Rose JK. 2002. Characterization of vesicular stomatitis virus recombinants that express and incorporate high levels

of hepatitis C virus glycoproteins. J Virol 76:6865–6872. https://doi.org/10

.1128/jvi.76.14.6865-6872.2002.

Lindenbach BD, Evans MJ, Syder AJ, Wolk B, Tellinghuisen TL, Liu CC,

Maruyama T, Hynes RO, Burton DR, McKeating JA, Rice CM. 2005. Complete replication of hepatitis C virus in cell culture. Science 309:623–626.

https://doi.org/10.1126/science.1114016.

Wakita T, Pietschmann T, Kato T, Date T, Miyamoto M, Zhao Z, Murthy K,

Habermann A, Krausslich HG, Mizokami M, Bartenschlager R, Liang TJ.

2005. Production of infectious hepatitis C virus in tissue culture from a

cloned viral genome. Nat Med 11:791–796. https://doi.org/10.1038/

nm1268.

Bungyoku Y, Shoji I, Makine T, Adachi T, Hayashida K, Nagano-Fujii M, Ide

YH, Deng L, Hotta H. 2009. Efficient production of infectious hepatitis C virus with adaptive mutations in cultured hepatoma cells. J Gen Virol 90:

1681–1691. https://doi.org/10.1099/vir.0.010983-0.

Murakami K, Ishii K, Ishihara Y, Yoshizaki S, Tanaka K, Gotoh Y, Aizaki H,

Kohara M, Yoshioka H, Mori Y, Manabe N, Shoji I, Sata T, Bartenschlager R,

Matsuura Y, Miyamura T, Suzuki T. 2006. Production of infectious hepatitis

C virus particles in three-dimensional cultures of the cell line carrying the

genome-length dicistronic viral RNA of genotype 1b. Virology 351:

381–392. https://doi.org/10.1016/j.virol.2006.03.038.

Kamada K, Shoji I, Deng L, Aoki C, Ratnoglik SL, Wakita T, Hotta H. 2012.

Generation of a recombinant reporter hepatitis C virus useful for the analyses of virus entry, intra-cellular replication and virion production.

Microbes Infect 14:69–78. https://doi.org/10.1016/j.micinf.2011.08.009.

Yorikawa C, Takaya E, Osako Y, Tanaka R, Terasawa Y, Hamakubo T,

Mochizuki Y, Iwanari H, Kodama T, Maeda T, Hitomi K, Shibata H, Maki M.

2008. Human calpain 7/PalBH associates with a subset of ESCRT-III-related

proteins in its N-terminal region and partly localizes to endocytic membrane

compartments. J Biochem 143:731–745. https://doi.org/10.1093/jb/mvn030.

Katoh K, Shibata H, Suzuki H, Nara A, Ishidoh K, Kominami E, Yoshimori T,

Maki M. 2003. The ALG-2-interacting protein Alix associates with CHMP4b, a

human homologue of yeast Snf7 that is involved in multivesicular body sorting. J Biol Chem 278:39104–39113. https://doi.org/10.1074/jbc.M301604200.

Okumura M, Takahashi T, Shibata H, Maki M. 2013. Mammalian ESCRT-IIIrelated protein IST1 has a distinctive met-pro repeat sequence that is

essential for interaction with ALG-2 in the presence of Ca21. Biosci Biotechnol Biochem 77:1049–1054. https://doi.org/10.1271/bbb.130022.

Horii M, Shibata H, Kobayashi R, Katoh K, Yorikawa C, Yasuda J, Maki M.

2006. CHMP7, a novel ESCRT-III-related protein, associates with CHMP4b

and functions in the endosomal sorting pathway. Biochem J 400:23–32.

https://doi.org/10.1042/BJ20060897.

Deng L, Gan X, Ito M, Chen M, Aly HH, Matsui C, Abe T, Watashi K, Wakita

T, Suzuki T, Okamoto T, Matsuura Y, Mizokami M, Shoji I, Hotta H. 2019.

Peroxiredoxin 1, a novel HBx-interacting protein, interacts with exosome

component 5 and negatively regulates hepatitis B virus (HBV) propagation through degradation of HBV RNA. J Virol 93:e02203-18. https://doi

.org/10.1128/JVI.02203-18.

jvi.asm.org

20

Downloaded from https://journals.asm.org/journal/jvi on 07 December 2022 by 133.30.169.29.

Deng et al.

57. Shirakura M, Murakami K, Ichimura T, Suzuki R, Shimoji T, Fukuda K, Abe

K, Sato S, Fukasawa M, Yamakawa Y, Nishijima M, Moriishi K, Matsuura Y,

Wakita T, Suzuki T, Howley PM, Miyamura T, Shoji I. 2007. E6AP ubiquitin

ligase mediates ubiquitylation and degradation of hepatitis C virus core

protein. J Virol 81:1174–1185. https://doi.org/10.1128/JVI.01684-06.

58. Wertz IE, O'Rourke KM, Zhang Z, Dornan D, Arnott D, Deshaies RJ, Dixit

VM. 2004. Human de-etiolated-1 regulates c-Jun by assembling a CUL4A

March 2022 Volume 96 Issue 6 e01811-21

Journal of Virology

ubiquitin ligase. Science 303:1371–1374. https://doi.org/10.1126/science

.1093549.

59. Wozniak AL, Griffin S, Rowlands D, Harris M, Yi M, Lemon SM,

Weinman SA. 2010. Intracellular proton conductance of the hepatitis

C virus p7 protein and its contribution to infectious virus production. PLoS Pathog 6:e1001087. https://doi.org/10.1371/journal.ppat

.1001087.

jvi.asm.org

21

Downloaded from https://journals.asm.org/journal/jvi on 07 December 2022 by 133.30.169.29.

ROS/JNK/Itch Signaling Pathway Promotes HCV Release

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る