リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Oxidative stress sensor Keap1 recognizes HBx protein to activate the Nrf2/ARE signaling pathway, thereby inhibiting hepatitis B virus replication」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Oxidative stress sensor Keap1 recognizes HBx protein to activate the Nrf2/ARE signaling pathway, thereby inhibiting hepatitis B virus replication

Ariffianto, Adi Deng, Lin Abe, Takayuki Matsui, Chieko Ito, Masahiko Ryo, Akihide Aly, Hussein Hassan Watashi, Koichi Suzuki, Tetsuro Mizokami, Masashi Matsuura, Yoshiharu Shoji, Ikuo 神戸大学

2023.10.31

概要

Hepatitis B virus (HBV) infection promotes reactive oxygen species production while paradoxically inducing the expression of antioxidant enzymes. HBV-induced disorders of redox homeostasis are closely associated with the development of hepatic diseases. However, the molecular mechanisms underlying the HBV-induced antioxidant response are poorly understood. The NF-E2-related factor 2 (Nrf2)/antioxidant response element (ARE) signaling pathway is an intrinsic defense mechanism against oxidative stress. We here aim to elucidate the role of the Nrf2/ARE signaling pathway in the HBV life cycle. ARE-driven reporter assays revealed that expression of HBV X protein (HBx), but not HBV core, large HBV surface, or HBV polymerase, strongly enhanced ARE-luciferase activity, suggesting that HBx plays an important role in the HBV-induced antioxidant response. Knockdown of Nrf2 resulted in a marked decrease in HBx-induced ARE-luciferase activity. Immunoblot analysis and immunofluorescence staining suggested that HBx activates Nrf2 by increasing Nrf2 protein levels and enhancing Nrf2 nuclear localization. The oxidative stress sensor Kelch-like ECH-associated protein 1 (Keap1) is required for the ubiquitin-dependent degradation of Nrf2. Coimmunoprecipitation analysis revealed that HBx interacted with Keap1, suggesting that HBx competes with Nrf2 for interaction with Keap1. A cell-based ubiquitylation assay showed that HBx promoted polyubiquitylation of Nrf2 via K6-linked polyubiquitin chains, and that this action may be associated with Nrf2 stabilization. A chromatin immunoprecipitation assay suggested that Nrf2 interacts with the HBV core promoter. Overexpression of Nrf2 strongly suppressed HBV core promoter activity, resulting in a marked reduction in viral replication. Based on the above, we propose that Keap1 recognizes HBx to activate the Nrf2/ARE signaling pathway upon HBV infection, thereby inhibiting HBV replication.

この論文で使われている画像

関連論文

参考文献

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Keap1 to promote Nrf2 nuclear accumulation and function. Mol Cell Biol

32:1506–1517. https://doi.org/10.1128/MCB.06271-11

Gorrini C, Baniasadi PS, Harris IS, Silvester J, Inoue S, Snow B, Joshi PA,

Wakeham A, Molyneux SD, Martin B, Bouwman P, Cescon DW, Elia AJ,

Winterton-Perks Z, Cruickshank J, Brenner D, Tseng A, Musgrave M,

Berman HK, Khokha R, Jonkers J, Mak TW, Gauthier ML. 2013. BRCA1

interacts with Nrf2 to regulate antioxidant signaling and cell survival. J

Exp Med 210:1529–1544. https://doi.org/10.1084/jem.20121337

Deng L, Gan X, Ito M, Chen M, Aly HH, Matsui C, Abe T, Watashi K, Wakita

T, Suzuki T, Okamoto T, Matsuura Y, Mizokami M, Shoji I, Hotta H. 2019.

Peroxiredoxin 1, a novel HBx-interacting protein, interacts with exosome

component 5 and negatively regulates hepatitis B virus (HBV)

propagation through degradation of HBV RNA. J Virol 93:e02203-18.

https://doi.org/10.1128/JVI.02203-18

Villeneuve NF, Lau A, Zhang DD. 2010. Regulation of the Nrf2-Keap1

antioxidant response by the ubiquitin proteasome system: an insight

into cullin-ring ubiquitin ligases. Antioxid Redox Signal 13:1699–1712.

https://doi.org/10.1089/ars.2010.3211

Durcan TM, Tang MY, Pérusse JR, Dashti EA, Aguileta MA, McLelland G-L,

Gros P, Shaler TA, Faubert D, Coulombe B, Fon EA. 2014. USP8 regulates

mitophagy by removing K6-linked ubiquitin conjugates from parkin.

EMBO J 33:2473–2491. https://doi.org/10.15252/embj.201489729

Michel MA, Swatek KN, Hospenthal MK, Komander D. 2017. Ubiquitin

linkage­specific affimers reveal insights into K6-linked ubiquitin

signaling. Mol Cell 68:233–246. https://doi.org/10.1016/j.molcel.2017.08.

020

Wang Y, Ma G, Wang XF, Na L, Guo X, Zhang J, Liu C, Du C, Qi T, Lin Y,

Wang X. 2022. Keap1 recognizes EIAV early accessory protein rev to

promote antiviral defense. PLoS Pathog 18:e1009986. https://doi.org/10.

1371/journal.ppat.1009986

Edwards MR, Johnson B, Mire CE, Xu W, Shabman RS, Speller LN, Leung

DW, Geisbert TW, Amarasinghe GK, Basler CF. 2014. The marburg virus

VP24 protein interacts with Keap1 to activate the cytoprotective

antioxidant response pathway. Cell Rep 6:1017–1025. https://doi.org/10.

1016/j.celrep.2014.01.043

Wyler E, Franke V, Menegatti J, Kocks C, Boltengagen A, Praktiknjo S,

Walch-Rückheim B, Bosse J, Rajewsky N, Grässer F, Akalin A, Landthaler

M. 2019. Single-cell RNA-sequencing of herpes simplex virus 1-infected

cells connects Nrf2 activation to an antiviral program. Nat Commun

10:4878. https://doi.org/10.1038/s41467-019-12894-z

Liu B, Fang M, He Z, Cui D, Jia S, Lin X, Xu X, Zhou T, Liu W. 2015.

Hepatitis B virus stimulates G6PD expression through HBx-mediated

Nrf2 activation. Cell Death Dis 6:e1980. https://doi.org/10.1038/cddis.

2015.322

Ibrahim MK, Abdelhafez TH, Takeuchi JS, Wakae K, Sugiyama M, Tsuge M,

Ito M, Watashi K, El Kassas M, Kato T, Murayama A, Suzuki T, Chayama K,

Shimotohno K, Muramatsu M, Aly HH, Wakita T, James Ou J-H. 2021.

MafF is an antiviral host factor that suppresses transcription from

hepatitis B virus core promoter. J Virol 95. https://doi.org/10.1128/JVI.

00767-21

Olagnier D, Farahani E, Thyrsted J, Blay-Cadanet J, Herengt A, Idorn M,

Hait A, Hernaez B, Knudsen A, Iversen MB, Schilling M, Jørgensen SE,

Thomsen M, Reinert LS, Lappe M, Hoang H-D, Gilchrist VH, Hansen AL,

Ottosen R, Nielsen CG, Møller C, van der Horst D, Peri S, Balachandran S,

Huang J, Jakobsen M, Svenningsen EB, Poulsen TB, Bartsch L, Thielke AL,

Luo Y, Alain T, Rehwinkel J, Alcamí A, Hiscott J, Mogensen TH, Paludan

SR, Holm CK. 2020. SARS-CoV2-mediated suppression of Nrf2-signaling

reveals potent antiviral and anti­inflammatory activity of 4-octylItaconate and dimethyl fumarate. Nat Commun 11:4938. https://doi.org/

10.1038/s41467-020-18764-3

Patra U, Mukhopadhyay U, Sarkar R, Mukherjee A, Chawla-Sarkar M.

2019. RA-839, a selective agonist of Nrf2/ARE pathway, exerts potent

anti-rotaviral efficacy in vitro. Antiviral Res 161:53–62. https://doi.org/10.

1016/j.antiviral.2018.11.009

Huang H, Konduru K, Solovena V, Zhou ZH, Kumari N, Takeda K, Nekhai

S, Bavari S, Kaplan GG, Yamada KM, Dhawan S. 2016. Therapeutic

potential of the Heme oxygenase-1 inducer hemin against ebola virus

infection. Curr Trends Immunol 17:117–123.

Huang H, Falgout B, Takeda K, Yamada KM, Dhawan S. 2017. Nrf2dependent induction of innate host defense via heme oxygenase-1

inhibits zika virus replication. Virology 503:1–5. https://doi.org/10.1016/j.

virol.2016.12.019

October 2023 Volume 97

Issue 10

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

Nio Y, Sasai M, Akahori Y, Okamura H, Hasegawa H, Oshima M, Watashi

K, Wakita T, Ryo A, Tanaka Y, Hijikata M. 2019. Bardoxolone methyl as a

novel potent antiviral agent against hepatitis B and C viruses in human

hepatocyte cell culture systems. Antiviral Res 169:104537. https://doi.

org/10.1016/j.antiviral.2019.104537

Blight KJ, McKeating JA, Rice CM. 2002. Highly permissive cell lines for

subgenomic and genomic hepatitis C virus RNA replication. J Virol

76:13001–13014. https://doi.org/10.1128/jvi.76.24.13001-13014.2002

Iwamoto M, Watashi K, Tsukuda S, Aly HH, Fukasawa M, Fujimoto A,

Suzuki R, Aizaki H, Ito T, Koiwai O, Kusuhara H, Wakita T. 2014. Evaluation

and identification of hepatitis B virus entry inhibitors using HepG2 cells

overexpressing a membrane transporter NTCP. Biochem Biophys Res

Commun 443:808–813. https://doi.org/10.1016/j.bbrc.2013.12.052

Watashi K, Liang G, Iwamoto M, Marusawa H, Uchida N, Daito T,

Kitamura K, Muramatsu M, Ohashi H, Kiyohara T, Suzuki R, Li J, Tong S,

Tanaka Y, Murata K, Aizaki H, Wakita T. 2013. Interleukin-1 and tumor

necrosis factor-alpha trigger restriction of hepatitis B virus infection via a

cytidine deaminase activation-induced cytidine deaminase (AID). J Biol

Chem 288:31715–31727. https://doi.org/10.1074/jbc.M113.501122

Ogura N, Watashi K, Noguchi T, Wakita T. 2014. Formation of covalently

closed circular DNA in Hep38.7-Tet cells, a tetracycline inducible

hepatitis B virus expression cell line. Biochem Biophys Res Commun

452:315–321. https://doi.org/10.1016/j.bbrc.2014.08.029

Sugiyama M, Tanaka Y, Kato T, Orito E, Ito K, Acharya SK, Gish RG,

Kramvis A, Shimada T, Izumi N, Kaito M, Miyakawa Y, Mizokami M. 2006.

Influence of hepatitis B virus genotypes on the intra- and extracellular

expression of viral DNA and antigens. Hepatology 44:915–924. https://

doi.org/10.1002/hep.21345

Bawono RG, Abe T, Qu M, Kuroki D, Deng L, Matsui C, Ryo A, Suzuki T,

Matsuura Y, Sugiyama M, Mizokami M, Shimotohno K, Shoji I. 2021.

HERC5 E3 ligase mediates ISGylation of hepatitis B virus X protein to

promote viral replication. J Gen Virol 102. https://doi.org/10.1099/jgv.0.

001668

Kouwaki T, Okamoto T, Ito A, Sugiyama Y, Yamashita K, Suzuki T,

Kusakabe S, Hirano J, Fukuhara T, Yamashita A, Saito K, Okuzaki D,

Watashi K, Sugiyama M, Yoshio S, Standley DM, Kanto T, Mizokami M,

Moriishi K, Matsuura Y. 2016. Hepatocyte factor JMJD5 regulates

hepatitis B virus replication through interaction with HBx. J Virol

90:3530–3542. https://doi.org/10.1128/JVI.02776-15

Fukutomi K, Hikita H, Murai K, Nakabori T, Shimoda A, Fukuoka M, Yamai

T, Higuchi Y, Miyakawa K, Suemizu H, Ryo A, Yamada R, Kodama T,

Sakamori R, Tatsumi T, Takehara T. 2022. Capsid allosteric modulators

enhance the innate immune response in hepatitis B virus-infected

hepatocytes during interferon administration. Hepatol Commun 6:281–

296. https://doi.org/10.1002/hep4.1804

Murai K, Hikita H, Kai Y, Kondo Y, Fukuoka M, Fukutomi K, Doi A, Yamai T,

Nakabori T, Fukuda R, Takahashi T, Miyakawa K, Suemizu H, Ryo A,

Yamada R, Kodama T, Sakamori R, Tatsumi T, Takehara T. 2020. Hepatitis

C virus infection suppresses hepatitis B virus replication via the RIG-I-like

helicase pathway. Sci Rep 10:941. https://doi.org/10.1038/s41598-02057603-9

Deng L, Adachi T, Kitayama K, Bungyoku Y, Kitazawa S, Ishido S, Shoji I,

Hotta H. 2008. Hepatitis C virus infection induces apoptosis through a

Bax-triggered, mitochondrion-mediated, caspase 3-dependent pathway.

J Virol 82:10375–10385. https://doi.org/10.1128/JVI.00395-08

Shirakura M, Murakami K, Ichimura T, Suzuki R, Shimoji T, Fukuda K, Abe

K, Sato S, Fukasawa M, Yamakawa Y, Nishijima M, Moriishi K, Matsuura Y,

Wakita T, Suzuki T, Howley PM, Miyamura T, Shoji I. 2007. E6AP ubiquitin

ligase mediates ubiquitylation and degradation of hepatitis C virus core

protein. J Virol 81:1174–1185. https://doi.org/10.1128/JVI.01684-06

Wertz IE, O’Rourke KM, Zhang Z, Dornan D, Arnott D, Deshaies RJ, Dixit

VM. 2004. Human de-etiolated-1 regulates c-Jun by assembling a CUL4A

ubiquitin ligase. Science 303:1371–1374. https://doi.org/10.1126/

science.1093549

Benhenda S, Ducroux A, Rivière L, Sobhian B, Ward MD, Dion S, Hantz O,

Protzer U, Michel M-L, Benkirane M, Semmes OJ, Buendia M-A, Neuveut

C. 2013. Methyltransferase PRMT1 is a binding partner of HBx and a

negative regulator of hepatitis B virus transcription. J Virol 87:4360–

4371. https://doi.org/10.1128/JVI.02574-12

Hayashi M, Deng L, Chen M, Gan X, Shinozaki K, Shoji I, Hotta H. 2016.

Interaction of the hepatitis B virus X protein with the lysine

10.1128/jvi.01287-23 34

Downloaded from https://journals.asm.org/journal/jvi on 15 November 2023 by 133.30.169.29.

Journal of Virology

Full-Length Text

Full-Length Text

Journal of Virology

October 2023 Volume 97

Issue 10

10.1128/jvi.01287-23 35

Downloaded from https://journals.asm.org/journal/jvi on 15 November 2023 by 133.30.169.29.

methyltransferase SET and MYND domain-containing 3 induces

activator protein 1 activation. Microbiol Immunol 60:17–25. https://doi.

org/10.1111/1348-0421.12345

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る