リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Diabatic and adiabatic transitions between Floquet states imprinted in coherent exciton emission in monolayer WSe₂」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Diabatic and adiabatic transitions between Floquet states imprinted in coherent exciton emission in monolayer WSe₂

Uchida, Kento Kusaba, Satoshi Nagai, Kohei Ikeda, Tatsuhiko N. Tanaka, Koichiro 京都大学 DOI:10.1126/sciadv.abq7281

2022.12

概要

Floquet engineering is a promising way of controlling quantum system with photon-dressed states on an ultrafast time scale. So far, the energy structure of Floquet states in solids has been intensively investigated. However, the dynamical aspects of the photon-dressed states under ultrashort pulse have not been explored yet. Their dynamics become highly sensitive to the driving field transients, and thus, understanding them is crucial for ultrafast manipulation of a quantum state. Here, we observed the coherent exciton emission in monolayer WSe₂ at room temperature at the appropriate photon energy and the field strength of the driving light pulse using high-harmonic spectroscopy. Together with numerical calculations, our measurements revealed that the coherent exciton emission spectrum reflects the diabatic and adiabatic dynamics of Floquet states of excitons. Our results provide a previosuly unexplored approach to Floquet engineering and lead to control of quantum materials through pulse shaping of the driving field.

この論文で使われている画像

参考文献

1. D. Fausti, R. I. Tobey, N. Dean, S. Kaiser, A. Dienst, M. C. Hoffmann, S. Pyon, T. Takayama, H. Takagi, A. Cavalleri, Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011).

2. X. Li, T. Qiu, J. Zhang, E. Baldini, J. Lu, A. M. Rappe, K. A. Nelson, Terahertz field-induced ferroelectricity in quantum paraelectric SrTiO3. Science 364, 1079–1082 (2019).

3. D. N. Basov, R. D. Averitt, D. Hsieh, Towards properties on demand in quantum materials. Nat. Mater. 16, 1077–1088 (2017).

4. A. De La Torre, D. M. Kennes, M. Claassen, S. Gerber, J. W. McIver, M. A. Sentef, Colloquium: Nonthermal pathways to ultrafast control in quantum materials. Rev. Mod. Phys. 93, 041002 (2021).

5. J. H. Shirley, Solution of the Schrodinger equation with a Hamiltonian periodic in time. Phys. Rev. 138, B979–B987 (1965).

6. T. Oka, S. Kitamura, Floquet engineering of quantum materials. Annu. Rev. Condens. Matter Phys. 10, 387–408 (2019).

7. U. D. Giovannini, H. Hübener, Floquet analysis of excitations in materials. J. Phys. Mater. 3, 012001 (2020).

8. J. W. McIver, B. Schulte, F. U. Stein, T. Matsuyama, G. Jotzu, G. Meier, A. Cavalleri, Light- induced anomalous Hall effect in graphene. Nat. Phys. 16, 38–41 (2020).

9. J.-Y. Shan, M. Ye, H. Chu, S. Lee, J. G. Park, L. Balents, D. Hsieh, Giant modulation of optical nonlinearity by Floquet engineering. Nature 600, 235–239 (2021).

10. Y. H. Wang, H. Steinberg, P. Jarillo-Herrero, N. Gedik, Observation of Floquet-Bloch states on the surface of a topological insulator. Science 342, 453–457 (2013).

11. F. Mahmood, C. K. Chan, Z. Alpichshev, D. Gardner, Y. Lee, P. A. Lee, N. Gedik, Selective scattering between Floquet-Bloch and Volkov states in a topological insulator. Nat. Phys. 12, 306–310 (2016).

12. K. Uchida, T. Otobe, T. Mochizuki, C. Kim, M. Yoshita, H. Akiyama, L. N. Pfeiffer, K. W. West, K. Tanaka, H. Hirori, Subcycle optical response caused by a terahertz dressed state with phase-locked wave functions. Phys. Rev. Lett. 117, 277402 (2016).

13. K. Drese, M. Holthaus, Floquet theory for short laser pulses. Eur. Phys. J. D 5, 119–134 (1999).

14. M. Holthaus, Floquet engineering with quasienergy bands of periodically driven optical lattices. J. Phys. B At. Mol. Opt. Phys. 49, 013001 (2015).

15. C. Deng, F. Shen, S. Ashhab, A. Lupascu, Dynamics of a two-level system under strong driving: Quantum-gate optimization based on Floquet theory. Phys. Rev. A 94, 032323 (2016).

16. T. N. Ikeda, S. Tanaka, Y. Kayanuma, Floquet-Landau-Zener interferometry: Usefulness of the Floquet theory in pulse-laser-driven systems. Phys. Rev. Research 4, 033075 (2022).

17. S. Ghimire, A. D. DiChiara, E. Sistrunk, P. Agostini, L. F. DiMauro, D. A. Reis, Observation of high-order harmonic generation in a bulk crystal. Nat. Phys. 7, 138–141 (2011).

18. O. Schubert, M. Hohenleutner, F. Langer, B. Urbanek, C. Lange, U. Huttner, D. Golde, T. Meier, M. Kira, S. W. Koch, R. Huber, Sub-cycle control of terahertz high-harmonic gen- eration by dynamical Bloch oscillations. Nat. Photonics 8, 119–123 (2014).

19. T. T. Luu, M. Garg, S. Y. Kruchinin, A. Moulet, M. T. Hassan, E. Goulielmakis, Extreme ultra- violet high-harmonic spectroscopy of solids. Nature 521, 498–502 (2015).

20. G. Vampa, T. J. Hammond, N. Thiré, B. E. Schmidt, F. Légaré, C. R. McDonald, T. Brabec, D. D. Klug, P. B. Corkum, All-optical reconstruction of crystal band structure. Phys. Rev. Lett. 115, 193603 (2015).

21. N. Yoshikawa, T. Tamaya, K. Tanaka, High-harmonic generation in graphene enhanced by elliptically polarized light excitation. Science 356, 736–738 (2017).

22. S. Ghimire, D. A. Reis, High-harmonic generation from solids. Nat. Phys. 15, 10–16 (2019).

23. F. H. M. Faisal, J. Z. Kamiński, Floquet-Bloch theory of high-harmonic generation in periodic structures. Phys. Rev. A 56, 748–762 (1997).

24. S. K. Earl, M. A. Conway, J. B. Muir, M. Wurdack, E. A. Ostrovskaya, J. O. Tollerud, J. A. Davis, Coherent dynamics of Floquet-Bloch states in monolayer WS2 reveals fast adiabatic switching. Phys. Rev. B 104, L060303 (2021).

25. Y.-R. Shen, The Principles of Nonlinear Optics (Wiley-Interscience, 1984).

26. A. Splendiani, L. Sun, Y. Zhang, T. Li, J. Kim, C. Y. Chim, G. Galli, F. Wang, Emerging pho- toluminescence in monolayer MoS2. Nano Lett. 10, 1271–1275 (2010).

27. K. F. Mak, C. Lee, J. Hone, J. Shan, T. F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

28. D. Xiao, G.-B. Liu, W. Feng, X. Xu, W. Yao, Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. Phys. Rev. Lett. 108, 196802 (2012).

29. X. Xu, W. Yao, D. Xiao, T. F. Heinz, Spin and pseudospins in layered transition metal di- chalcogenides. Nat. Phys. 10, 343–350 (2014).

30. G. Wang, A. Chernikov, M. M. Glazov, T. F. Heinz, X. Marie, T. Amand, B. Urbaszek, Collo- quium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).

31. I. Floss, C. Lemell, G. Wachter, V. Smejkal, S. A. Sato, X.-M. Tong, K. Yabana, J. Burgdörfer, Ab initio multiscale simulation of high-order harmonic generation in solids. Phys. Rev. A 97, 011401(R) (2018).

32. J. Kim, X. Hong, C. Jin, S. F. Shi, C. Y. S. Chang, M. H. Chiu, L. J. Li, F. Wang, Ultrafast generation of pseudo-magnetic field for valley excitons in WSe2 monolayers. Science 346, 1205–1208 (2014).

33. E. J. Sie, J. W. M. Iver, Y.-H. Lee, L. Fu, J. Kong, N. Gedik, Valley-selective optical Stark effect in monolayer WS2. Nat. Mater. 14, 290–294 (2014).

34. E. J. Sie, C. H. Lui, Y. H. Lee, L. Fu, J. Kong, N. Gedik, Large, valley-exclusive Bloch-Siegert shift in monolayer WS2. Science 355, 1066–1069 (2017).

35. H. Liu, Y. Li, Y. S. You, S. Ghimire, T. F. Heinz, D. A. Reis, High-harmonic generation from an atomically thin semiconductor. Nat. Phys. 13, 262–265 (2017).

36. N. Yoshikawa, K. Nagai, K. Uchida, Y. Takaguchi, S. Sasaki, Y. Miyata, K. Tanaka, Interband resonant high-harmonic generation by valley polarized electron–hole pairs. Nat. Commun. 10, 3709 (2019).

37. F. Langer, C. P. Schmid, S. Schlauderer, M. Gmitra, J. Fabian, P. Nagler, C. Schüller, T. Korn, P. G. Hawkins, J. T. Steiner, U. Huttner, S. W. Koch, M. Kira, R. Huber, Lightwave valleytronics in a monolayer of tungsten diselenide. Nature 557, 76–80 (2018).

38. K. Nagai, K. Uchida, N. Yoshikawa, T. Endo, Y. Miyata, K. Tanaka, Dynamical symmetry of strongly light-driven electronic system in crystalline solids. Commun. Phys. 3, 137 (2020).

39. M. Borsch, C. P. Schmid, L. Weigl, S. Schlauderer, N. Hofmann, C. Lange, J. T. Steiner, S. W. Koch, R. Huber, M. Kira, Super-resolution lightwave tomography of electronic bands in quantum materials. Science 370, 1204–1207 (2020).

40. T. LaMountain, H. Bergeron, I. Balla, T. K. Stanev, M. C. Hersam, N. P. Stern, Valley-selective optical Stark effect probed by Kerr rotation. Phys. Rev. B 97, 045307 (2018).

41. H. Zeng, J. Dai, W. Yao, D. Xiao, X. Cui, Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotechnol. 7, 490–493 (2012).

42. T. Cao, G. Wang, W. Han, H. Ye, C. Zhu, J. Shi, Q. Niu, P. Tan, E. Wang, B. Liu, J. Feng, Valley- selective circular dichroism of monolayer molybdenum disulphide. Nat. Commun. 3, 887 (2012).

43. A. M. Jones, H. Yu, N. J. Ghimire, S. Wu, G. Aivazian, J. S. Ross, B. Zhao, J. Yan, D. G. Mandrus, D. Xiao, W. Yao, X. Xu, Optical generation of excitonic valley coherence in monolayer WSe2. Nat. Nanotechnol. 8, 634–638 (2013).

44. S. Park, S. Arscott, T. Taniguchi, K. Watanabe, F. Sirotti, F. Cadiz, Efficient valley polarization of charged excitons and resident carriers in molybdenum disulfide monolayers by optical pumping. Commun. Phys. 5, 73 (2022).

45. F. Langer, M. Hohenleutner, C. P. Schmid, C. Poellmann, P. Nagler, T. Korn, C. Schüller, M. S. Sherwin, U. Huttner, J. T. Steiner, S. W. Koch, M. Kira, R. Huber, Lightwave-driven quasiparticle collisions on a subcycle time scale. Nature 533, 225–229 (2016).

46. K. Nagai, K. Uchida, S. Kusaba, T. Endo, Y. Miyata, K. Tanaka, Effect of incoherent electron- hole pairs on high harmonic generation in atomically thin semiconductors. arXiv:2112. 12951 [ physics.optics] (24 December 2021).

47. H. Haug, S. W. Koch, Quantum Theory of the Optical and Electronic Properties of Semicon- ductors (World Scientific, 2009).

48. P. Jürgens, B. Liewehr, B. Kruse, C. Peltz, D. Engel, A. Husakou, T. Witting, M. Ivanov, M. J. J. Vrakking, T. Fennel, A. Mermillod-Blondin, Origin of strong-field-induced low-order harmonic generation in amorphous quartz. Nat. Phys. 16, 1035–1039 (2020).

49. S. Kusaba, Y. Katagiri, K. Watanabe, T. Taniguchi, K. Yanagi, N. Naka, K. Tanaka, Broadband sum frequency generation spectroscopy of dark exciton states in hBN-encapsulated monolayer WSe2. Opt. Express 29, 24629–24645 (2021).

50. Y. Miyauchi, S. Konabe, F. Wang, W. Zhang, A. Hwang, Y. Hasegawa, L. Zhou, S. Mouri, M. Toh, G. Eda, K. Matsuda, Evidence for line width and carrier screening effects on exci- tonic valley relaxation in 2D semiconductors. Nat. Commun. 9, 2598 (2018).

51. Y. Murotani, M. Takayama, F. Sekiguchi, C. Kim, H. Akiyama, R. Shimano, Terahertz field- induced ionization and perturbed free induction decay of excitons in bulk GaAs. J. Phys. D Appl. Phys. 51, 114001 (2018).

52. K. Shinokita, H. Hirori, M. Nagai, N. Satoh, Y. Kadoya, K. Tanaka, Dynamical Franz–Keldysh effect in GaAs/AlGaAs multiple quantum wells induced by single-cycle terahertz pulses. Appl. Phys. Lett. 97, 211902 (2010).

53. P. Xia, T. Tamaya, C. Kim, F. Lu, T. Kanai, N. Ishii, J. Itatani, H. Akiyama, T. Kato, High-harmonic generation in GaAs beyond the perturbative regime. Phys. Rev. B 104, L121202 (2021).

54. Á. Jiménez-Galán, R. E. F. Silva, O. Smirnova, M. Ivanov, Lightwave control of topological properties in 2D materials for sub-cycle and non-resonant valley manipulation. Nat. Pho- tonics 14, 728–732 (2020).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る