リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Waveform sampling on an atomic scale」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Waveform sampling on an atomic scale

Jun Takeda 60202165 Ikufumi Katayama 80432532 横浜国立大学

2021.01.29

概要

The manipulation of matter on an atomic scale and ultrafast timescale occurs in important processes such as electron transfer, molecular motion and chemical reactions. Visualization of these spatiotemporal dynamics is a long-standing goal for the scientific community. In recent years, field-driven nanoscopy, an emerging field of nanophotonics, has opened new avenues for studying the non-perturbative regime of light–matter interactions with extremely high spatiotemporal resolution. Since such light–matter interactions are sensitive to not only the amplitude of the electric field but also its phase, the precise control of carrier-envelope phase (CEP) of ultrashort laser pulses is crucial.

この論文で使われている画像

関連論文

参考文献

[1] Corkum, P. B. & Krausz, F. Nat. Phys. 3, 381–387 (2007).

[2] P. Dombi et al., Rev. Mod. Phys. 92, 025003 (2020)

[3] Garg, M. & Kern, K. Science 367, 411–415 (2020).

Nat. Photon. 15, pp. 70-71 (2021)

[4] Cocker, T. L. et al. Nat. Photon. 7, 620–625 (2013).

[5] Jelic, V. et al. Nat. Phys. 13, 591–598 (2017).

[6] Cocker, T. L. et al. Nature 539, 263–267 (2016).

[7] Yoshioka, K. et al. Nat. Photon. 10, 762–765 (2016).

[8] Wang, K. et al. Appl. Phys. Lett. 85, 2715 (2004).

[9] Yoshioka, K. et al. Nano Lett. 18, 5198–5204 (2018).

[10] Yoshida, S. et al. ACS Photonics 6, 1356–1364 (2019).

[11] Peller D. et al. Nat. Photon. https://doi.org/xxxxxx

[12] Peller, D. et al. Nature 585, 58–62 (2020).

[13] Jestädt, R. et al. Advances in Physics 68, 225–333 (2019).

Fig. 1 | Near-field waveform sampling. a, Schematic of single-molecule switch

introduced into a lightwave-driven scanning tunnelling microscopy. b Switching

probability p induced by the tip-confined peak voltage. The different value of the peak

voltage leads to the different tunnelling rate, and the onset behaviour gives a calibration

of p as a function of Vpeak. c Experimental data for the retrieved tip-confined voltage

waveform which shows good agreement with a simulation based on classical

electrodynamics. Fig. 1b and 1c adapted from [11].

...

参考文献をもっと見る