リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Energy conversion and storage via photoinduced polarization change in non-ferroelectric molecular [CoGa] crystals」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Energy conversion and storage via photoinduced polarization change in non-ferroelectric molecular [CoGa] crystals

Sadhukhan, Pritam Wu, Shu-Qi Kanegawa, Shinji 金川, 慎治 カネガワ, シンジ Su, Sheng-Qun Zhang, Xiaopeng Nakanishi, Takumi 中西, 匠 ナカニシ, タクミ Long, Jeremy Ian Gao, Kaige Shimada, Rintaro Okajima, Hajime 岡島, 元 オカジマ, ハジメ Sakamoto, Akira 坂本, 章 サカモト, アキラ Chiappella, Joy G. Huzan, Myron S. Kroll, Thomas Sokaras, Dimosthenis Baker, Michael L. Sato, Osamu 佐藤, 治 サトウ, オサム 九州大学

2023.06.09

概要

To alleviate the energy and environmental crisis, in the last decades, energy harvesting by utilizing optical control has emerged as a promising solution. Here we report a polar crystal that exhibits

この論文で使われている画像

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

Emerging Materials for Energy Conversion and Storage (Eds.

Cheong K. Y., Impellizzeri G. & Fraga M. A.) 461–472 (Elsevier, 2018).

Lu, K. Materials in Energy Conversion, Harvesting, and Storage Ch 4

(John Wiley & Sons, Inc., Hoboken, New Jersey, 2014).

Pandya, S. et al. New approach to waste-heat energy harvesting:

pyroelectric energy conversion. NPG Asia Mater. 11, 26 (2019).

Boriskina, S. V. et al. Roadmap on optical energy conversion. J. Opt.

18, 073004 (2016).

Green, M. A. & Bremner, S. P. Energy conversion approaches and

materials for high-efficiency photovoltaics. Nat. Mater. 16,

23–34 (2017).

Green, M. A. Third generation photovoltaics- Advanced Solar

Energy Conversion (Springer Series in Photonics, Springer Berlin,

Heidelberg, 2006).

Saeki, A. Evaluation-oriented exploration of photo energy conversion systems: from fundamental optoelectronics and material

screening to the combination with data science. Polym. J. 52,

1307–1321 (2020).

Nakamura, M. et al. Shift current photovoltaic effect in a ferroelectric charge-transfer complex. Nat. Commun. 8, 281 (2017).

Tan, L. Z. et al. Shift current bulk photovoltaic effect in polar

materials—hybrid and oxide perovskites and beyond. npj Comput.

Mater. 2, 16026 (2016).

Sato, O. Dynamic molecular crystals with switchable physical

properties. Nat. Chem. 8, 644–656 (2016).

Wu, S.-Q. et al. Macroscopic polarization change via electron

transfer in a valence tautomeric cobalt complex. Nat. Commun. 11,

1992 (2020).

Gransbury, G. K. & Boskovic, C. Valence tautomerism in d-block

complexes. Encycl. Inorg. Bioinorg. Chem. 1–24 (2021).

Senthil Kumar, K. & Ruben, M. Emerging trends in spin crossover

(SCO) based functional materials and devices. Coord. Chem. Rev.

346, 176–205 (2017).

Sato, O., Tao, J. & Zhang, Y.-Z. Control of magnetic properties

through external stimuli. Angew. Chem. Int. Ed. 46, 2152–2187

(2007).

Spin-Crossover Materials: Properties and Application (ed. Halcrow,

M. A.) John Wiley & Sons, Ltd, UK, 2013.

Lu, Y.-L., Lan, W.-L., Shi, W., Jin, Q.-H. & Cheng, P. Photo-induced

variation of magnetism in coordination polymers with ligand-based

electron transfer. Dalton Trans. 50, 13124–13137 (2021).

Witt, A., Heinemann, F. W. & Khusniyarov, M. M. Bidirectional photoswitching of magnetic properties at room temperature: liganddriven light-induced valence tautomerism. Chem. Sci. 6, 4599–4609

(2015).

Carbonera, C., Dei, A., Létard, J.-F., Sangregorio, C. & Sorace, L.

Thermally and light-induced valence tautomeric transition in a

dinuclear cobalt–tetraoxolene complex. Angew. Chem. Int. Ed. 43,

3136–3138 (2004).

Nature Communications | (2023)14:3394

https://doi.org/10.1038/s41467-023-39127-8

19. Ash, R., Zhang, K. & Vura-Weis, J. Photoinduced valence tautomerism of a cobalt-dioxolene complex revealed with femtosecond

M-edge XANES. J. Chem. Phys. 151, 104201 (2019).

20. Kanegawa, S. et al. Directional electron transfer in crystals of [CrCo]

dinuclear complexes achieved by chirality-assisted preparative

method. J. Am. Chem. Soc. 138, 14170–14173 (2016).

21. Sadhukhan, P. et al. Manipulating electron redistribution to achieve

electronic pyroelectricity in molecular [FeCo] crystals. Nat. Commun. 12, 4836 (2021).

22. Beni, A. et al. Optically induced valence tautomeric interconversion

in cobalt dioxolene complexes. J. Braz. Chem. Soc. 17, 1522–1533

(2006).

23. Shapovalova, S. O. et al. Temperature and time-resolved XANES

studies of novel valence tautomeric cobalt complex. Chem. Lett.

50, 1933–1937 (2021).

24. Liang, H. W. et al. Charge and spin-state characterization of cobalt

bis(o-dioxolene) valence tautomers using Co Kβ X-ray emission and

L-edge X-ray absorption spectroscopies. Inorg. Chem. 56,

737–747 (2017).

25. Baker, M. L. et al. K- and L-edge X-ray absorption spectroscopy

(XAS) and resonant inelastic X-ray scattering (RIXS) determination

of differential orbital covalency (DOC) of transition metal sites.

Coord. Chem. Rev. 345, 182–208 (2017).

26. Haverkort, M. W., Zwierzycki, M. & Andersen, O. K. Multiplet ligandfield theory using Wannier orbitals. Phys. Rev. B 85, 165113 (2012).

27. Retegan, M. Crispy: v0.7.3 (2019).

28. Gütlich, P., Gaspar, A. B. & Garcia, Y. Spin state switching in iron

coordination compounds. Beilstein J. Org. Chem. 9, 342–391

(2013).

29. Su, S.-Q. et al. Photoinduced persistent polarization change in a

spin transition crystal. Angew. Chem. Int. Ed. 61, e202208771 (2022).

30. Tait, A. M., Busch, D. H. & Curtis, N. F. 5,5,7,12,12,14-hexamethyl

−1,4,8,11-tetraazacyclo-tetradecane (5,5,7,12,12,14-Me6[14]Ane1,4,8,11-N4) complexes. Inorg. Synth. 18, 10–17 (1978).

31. Ito, H., Fujita, J., Toriumi, K. & Ito, T. Optical resolution of rac5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclo-tetradecane (L),

circular dichroism spectra of Ni(II) complexes with the active ligand,

and the absolute configuration of (–)589-[(Ni(SS-L))2(d-tart)(H2O)]

(ClO4)2•2H2O as determined by the X-ray analysis. Bull. Chem. Soc.

Jpn. 54, 2988–2994 (1981).

32. Buchner, M., Höfler, K., Henne, B., Ney, V. & Ney, A. Tutorial: basic

principles, limits of detection, and pitfalls of highly sensitive SQUID

magnetometry for nanomagnetism and spintronics. J. Appl. Phys.

124, 161101 (2018).

33. Lubomirsky, I. & Stafsudd, O. Practical guide for pyroelectric measurements. Rev. Sci. Instrum. 83, 051101 (2012).

Acknowledgements

This work was supported by JSPS KAKENHI Grant Numbers

JP20H00385, JP20K05421, JP21K05085, JP21K05086, JP20K15247. Use

of the Stanford Synchrotron Radiation Lightsource, SLAC National

Accelerator Laboratory, is supported by the U.S. Department of Energy,

Office of Science, Office of Basic Energy Sciences. M.L.B. acknowledges

the support of the Royal Society of Chemistry (RM1802-4019) and the

University of Manchester.

Author contributions

O.S. and S.K. supervised the project. P.S. and T.N. carried out synthetic

and crystallographic experiments. Pyroelectric measurement was performed by P.S., S.-Q.W., S.K., X.Z. and K.G. Light-energy conversion was

measured by P.S. and J.I.L. M.L.B., M.S.H., J.G.C., T.K. and D.S. measured

and analysed the HERFD spectra. R.S., H.O. and A.S. performed the IR

measurements. S.K. and S.-Q.W. have carried out theoretical analysis.

P.S., S.-Q.W., S.-Q.S., S.K. and O.S. discussed and co-wrote the

manuscript.

Article

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information The online version contains

supplementary material available at

https://doi.org/10.1038/s41467-023-39127-8.

Correspondence and requests for materials should be addressed to

Shinji Kanegawa or Osamu Sato.

Peer review information Nature Communications thanks the anonymous reviewers for their contribution to the peer review of this work.

Reprints and permissions information is available at

http://www.nature.com/reprints

https://doi.org/10.1038/s41467-023-39127-8

Open Access This article is licensed under a Creative Commons

Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as

long as you give appropriate credit to the original author(s) and the

source, provide a link to the Creative Commons license, and indicate if

changes were made. The images or other third party material in this

article are included in the article’s Creative Commons license, unless

indicated otherwise in a credit line to the material. If material is not

included in the article’s Creative Commons license and your intended

use is not permitted by statutory regulation or exceeds the permitted

use, you will need to obtain permission directly from the copyright

holder. To view a copy of this license, visit http://creativecommons.org/

licenses/by/4.0/.

© The Author(s) 2023

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Nature Communications | (2023)14:3394

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る