リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Differences in the transcriptional immune response to Albugo candida between white rust resistant and susceptible cultivars in Brassica rapa L.」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Differences in the transcriptional immune response to Albugo candida between white rust resistant and susceptible cultivars in Brassica rapa L.

Miyaji, Naomi Akter, Mst. Arjina Shimizu, Motoki Hasan, Mehraj Doullah, Md Asad-Ud Dennis, Elizabeth S. Chuma, Izumi Fujimoto, Ryo 神戸大学

2023.05.26

概要

Albugo candida causing white rust disease decreases the yield of Brassica rapa vegetables greatly. Resistant and susceptible cultivars in B. rapa vegetables have different immune responses against A. candida inoculation, however, the mechanism of how host plants respond to A. candida is still unknown. Using RNA-sequencing, we identified differentially expressed genes (DEGs) between A. candida inoculated [48 and 72 h after inoculation (HAI)] and non-inoculated samples in resistant and susceptible cultivars of komatsuna (B. rapa var. perviridis). Functional DEGs differed between the resistant and susceptible cultivars in A. candida inoculated samples. Salicylic acid (SA) responsive genes tended to be changed in their expression levels by A. candida inoculation in both resistant and susceptible cultivars, but different genes were identified in the two cultivars. SA-dependent systemic acquired resistance (SAR) involving genes were upregulated following A. candida inoculation in the resistant cultivar. Particular genes categorized as SAR that changed expression levels overlapped between A. candida and Fusarium oxysporum f. sp. conglutinans inoculated samples in resistant cultivar, suggesting a role for SAR in defense response to both pathogens particularly in the effector-triggered immunity downstream pathway. These findings will be useful for understanding white rust resistance mechanisms in B. rapa.

この論文で使われている画像

参考文献

1. Cheng, F. et al. Subgenome parallel selection is associated with morphotype diversification and convergent crop domestication in

Brassica rapa and Brassica oleracea. Nat. Genet. 48, 1218–1224 (2016).

2. Neik, T. X., Barbetti, M. J. & Batley, J. Current status and challenges in identifying disease resistance genes in Brassica napus. Front.

Plant Sci. 8, 1788 (2017).

3. Lv, H. et al. The importance of genetic and epigenetic research in the Brassica vegetables in the face of climate change. In Genomic

Designing of Climate-Smart Vegetable Crops (ed. Kole, C.) 161–255 (Springer, 2020).

4. Zhang, K. et al. Challenges and prospects for a potential allohexaploid Brassica crop. Theor. Appl. Genet. 134, 2711–2726 (2021).

5. UN. Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Jpn. J. Bot. 7, 389–452 (1935).

Scientific Reports |

Vol:.(1234567890)

(2023) 13:8599 |

https://doi.org/10.1038/s41598-023-35205-5

10

www.nature.com/scientificreports/

6. Fujimoto, R. et al. Recent research on the mechanism of heterosis is important for crop and vegetable breeding systems. Breed.

Sci. 68, 145–158 (2018).

7. Lv, H., Fang, Z., Yang, L., Zhang, Y. & Wang, Y. An update on the arsenal: Mining resistance genes for disease management of

Brassica crops in the genomic era. Hortic. Res. 7, 34 (2020).

8. Mehraj, H. et al. Genetics of clubroot and Fusarium wilt disease resistance in Brassica vegetables: The application of marker assisted

breeding for disease resistance. Plants 9, 726 (2020).

9. Saharan, G., Verma, P., Meena, P. & Kumar, A. The Disease in White Rust of Crucifers: Biology, Ecology and Management 7–54

(Springer, 2014).

10. Meena, P. D., Verma, P. R., Saharan, G. S. & Borhan, M. H. Historical perspectives of white rust caused by Albugo candida in oilseed

Brassica. J. Oilseed Brass. 5, 1–41 (2014).

11. Singh, K. P., Kumari, P. & Rai, P. K. Current status of the disease-resistant gene(s)/QTLs, and strategies for improvement in Brassica

juncea. Front. Plant Sci. 12, 617405 (2021).

12. Jones, J. D. G. & Dangl, J. L. The plant immune system. Nature 444, 323–329 (2006).

13. Dodds, P. N. & Rathjen, J. P. Plant immunity: Towards an integrated view of plant–pathogen interactions. Nat. Rev. Genet. 11,

539–548 (2010).

14. Yuan, M. et al. Pattern-recognition receptors are required for NLR-mediated plant immunity. Nature 592, 105–109 (2021).

15. Yuan, M., Ngou, B. P. M., Ding, P. & Xin, X. F. PTI-ETI crosstalk: An integrative view of plant immunity. Curr. Opin. Plant Biol.

62, 102030 (2021).

16. Lu, Y. & Tsuda, K. Intimate association of PRR- and NLR-mediated signaling in plant immunity. Mol. Plant Microbe Interact. 34,

3–14 (2021).

17. Glazebrook, J. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu. Rev. Phytopathol. 43,

205–227 (2005).

18. Bari, R. & Jones, J. D. G. Role of plant hormones in plant defence responses. Plant Mol. Biol. 69, 473–488 (2009).

19. Pieterse, C. M. J., Van der Does, D., Zamioudis, C., Leon-Reyes, A. & Van Wees, S. C. M. Hormonal modulation of plant immunity.

Annu. Rev. Cell Dev. Biol. 28, 489–521 (2012).

20. Klessig, D. F., Choi, H. W. & Dempsey, D. A. Systemic acquired resistance and salicylic acid: Past, present, and future. Mol. Plant

Microbe Interact. 31, 871–888 (2018).

21. Caarls, L., Pieterse, C. M. & Van Wees, S. C. M. How salicylic acid takes transcriptional control over jasmonic acid signaling. Front.

Plant Sci. 6, 170 (2015).

22. Shigenaga, A. M. & Argueso, C. T. No hormone to rule them all: Interactions of plant hormones during the responses of plants to

pathogens. Semin. Cell Dev. Biol. 56, 174–189 (2016).

23. Shigenaga, A. M., Berens, M. L., Tsuda, K. & Argueso, C. T. Towards engineering of hormonal crosstalk in plant immunity. Curr.

Opin. Plant Biol. 38, 164–172 (2017).

24. Zhang, W. et al. Different pathogen defense strategies in Arabidopsis: More than pathogen recognition. Cells 7, 252 (2018).

25. Garber, M., Grabherr, M. G., Guttman, M. & Trapnell, C. Computational methods for transcriptome annotation and quantification

using RNA-seq. Nat. Methods 8, 469–477 (2011).

26. Saeki, N. et al. Molecular and cellular characteristics of hybrid vigour in a commercial hybrid of Chinese cabbage. BMC Plant Biol.

16, 45 (2016).

27. Shea, D. J. et al. Long noncoding RNAs in Brassica rapa L. following vernalization. Sci. Rep. 9, 9302 (2019).

28. Stark, R., Grzelak, M. & Hadfield, J. RNA sequencing: The teenage years. Nat. Rev. Genet. 20, 631–656 (2019).

29. Wang, N. N. et al. Phosphorylation of WRKY16 by MPK3-1 is essential for its transcriptional activity during fiber initiation and

elongation in cotton (Gossypium hirsutum). Plant Cell 33, 2736–2752 (2021).

30. Neik, T. X., Amas, J., Barbetti, M., Edwards, D. & Batley, J. Understanding host–pathogen interactions in Brassica napus in the

omics era. Plants 9, 1336 (2020).

31. Campos, M. D., Félix, M. D. R., Patanita, M., Materatski, P. & Varanda, C. High throughput sequencing unravels tomato-pathogen

interactions towards a sustainable plant breeding. Hortic. Res. 8, 171 (2021).

32. Chen, J., Pang, W., Chen, B., Zhang, C. & Piao, Z. Transcriptome analysis of Brassica rapa near-isogenic lines carrying clubrootresistant and -susceptible alleles in response to Plasmodiophora brassicae during early infection. Front. Plant Sci. 6, 1183 (2016).

33. Yuan, Y. et al. Transcriptome and coexpression network analyses reveal hub genes in Chinese cabbage (Brassica rapa L. ssp. pekinensis) during different stages of Plasmodiophora brassicae infection. Front. Plant Sci. 12, 650252 (2021).

34. Miyaji, N. et al. Comparison of transcriptome profiles by Fusarium oxysporum inoculation between Fusarium yellows resistant

and susceptible lines in Brassica rapa L.. Plant Cell Rep. 36, 1841–1854 (2017).

35. Liu, M. et al. Comparative transcriptome analysis reveals defense responses against soft rot in Chinese cabbage. Hortic. Res. 6, 68

(2019).

36. Zheng, H. et al. Comparative transcriptome analysis between a resistant and a susceptible Chinese cabbage in response to Hyaloperonospora brassicae. Plant Signal Behav. 15, e1777372 (2020).

37. Miyaji, N., Shimizu, M., Takasaki-Yasuda, T., Dennis, E. S. & Fujimoto, R. The transcriptional response to salicylic acid plays a

role in Fusarium yellows resistance in Brassica rapa L.. Plant Cell Rep. 40, 605–619 (2021).

38. Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120

(2014).

39. Kim, D., Paggi, J. M., Park, C., Bennett, C. & Salzberg, S. L. Graph-based genome alignment and genotyping with HISAT2 and

HISAT-genotype. Nat. Biotechnol. 37, 907–915 (2019).

40. Trapnell, C. et al. Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat.

Protoc. 7, 562–578 (2012).

41. Du, Z., Zhou, X., Ling, Y., Zhang, Z. & Su, Z. agriGO: A GO analysis toolkit for the agricultural community. Nucleic Acids Res. 38,

W64–W70 (2010).

42. Shimizu, M. et al. Identification of candidate genes for fusarium yellows resistance in Chinese cabbage by differential expression

analysis. Plant Mol. Biol. 85, 247–257 (2014).

43. Akter, A. et al. Gene expression analysis in response to vernalization in Chinese cabbage (Brassica rapa L.). Hortic. J. 89, 268–277

(2020).

44. Miyaji, N. et al. Development of a new DNA marker for Fusarium yellows resistance in Brassica rapa vegetables. Plants 10, 1082

(2021).

45. Fujimoto, R., Sasaki, T. & Nishio, T. Characterization of DNA methyltransferase genes in Brassica rapa. Genes. Genet. Syst. 81,

235–242 (2006).

46. Petkowski, J. E., Minchinton, E., Thomson, F., Faggian, R. & Cahill, D. Races of Albugo candida causing white blister rust on Brassica vegetables in Australia. Acta Hortic. 867, 133–142 (2010).

47. Zhong, Q., Hu, H., Fan, B., Zhu, C. & Chen, Z. Biosynthesis and roles of salicylic acid in balancing stress response and growth in

plants. Int. J. Mol. Sci. 22, 11672 (2021).

48. Navarrete, F. et al. TOPLESS promotes plant immunity by repressing auxin signaling and is targeted by the fungal effector Naked1.

Plant Commun. 3, 100269 (2022).

Scientific Reports |

(2023) 13:8599 |

https://doi.org/10.1038/s41598-023-35205-5

11

Vol.:(0123456789)

www.nature.com/scientificreports/

49. van Damme, M. et al. Identification of Arabidopsis loci required for susceptibility to the downy mildew pathogen Hyaloperonospora

parasitica. Mol. Plant Microbe Interact. 18, 583–592 (2005).

50. van Damme, M., Huibers, R. P., Elberse, J. & Van den Ackerveken, G. Arabidopsis DMR6 encodes a putative 2OG-Fe(II) oxygenase

that is defense-associated but required for susceptibility to downy mildew. Plant J. 54, 785–793 (2008).

51. Zeilmaker, T. et al. DOWNY MILDEW RESISTANT 6 and DMR6-LIKE OXYGENASE 1 are partially redundant but distinct

suppressors of immunity in Arabidopsis. Plant J. 81, 210–222 (2015).

52. Kieu, N. P., Lenman, M., Wang, E. S., Petersen, B. L. & Andreasson, E. Mutations introduced in susceptibility genes through

CRISPR/Cas9 genome editing confer increased late blight resistance in potatoes. Sci. Rep. 11, 4487 (2021).

53. Thomazella, D. P. T. et al. Loss of function of a DMR6 ortholog in tomato confers broad-spectrum disease resistance. Proc. Natl.

Acad. Sci. USA 118, e2026152118 (2021).

54. Akter, M. A. et al. Transcriptional association between mRNAs and their paired natural antisense transcripts following Fusarium

oxysporum inoculation in Brassica rapa L.. Horticulturae 8, 17 (2022).

55. Pruitt, R. N. et al. The EDS1-PAD4-ADR1 node mediates Arabidopsis pattern-triggered immunity. Nature 598, 495–499 (2021).

56. Van der Does, D. et al. The Arabidopsis leucine-rich repeat receptor kinase MIK2/LRR-KISS connects cell wall integrity sensing,

root growth and response to abiotic and biotic stresses. PLoS Genet. 13, e1006832 (2017).

57. Coleman, A. D. et al. The Arabidopsis leucine-rich repeat receptor-like kinase MIK2 is a crucial component of early immune

responses to a fungal-derived elicitor. New Phytol. 229, 3453–3466 (2021).

58. Rhodes, J. et al. Perception of a divergent family of phytocytokines by the Arabidopsis receptor kinase MIK2. Nat. Commun. 12,

705 (2021).

59. Lyons, R. et al. Fusarium oxysporum triggers tissue-specific transcriptional reprogramming in Arabidopsis thaliana. PLoS One 10,

e0121902 (2015).

Acknowledgements

This work was funded by International Research Fellow of JSPS [Invitation Fellowships for Research in Japan

(Long-term)] to MAD (L19543), Grant-in-Aid for JSPS Research Fellow to NM (18J20027), Kobe University

Strategic International Collaborative Research Grant (Type B Fostering Joint Research) and G-7 Scholarship

Foundation to RF, and grants from Project of the Bio-oriented Technology Research Advancement Institution

(Research program on development of innovative technology) to IC and RF (JPJ007097).

Author contributions

N.M., I.C., and R.F. conceived and designed the research. N.M., M.A.A., H.M., and M.A.D. conducted experiments. N.M. and M.S. carried out data analysis. N.M., M.A.A., and R.F. wrote the original draft. E.S.D., I.C., and

R.F. provided critical revisions to the manuscript. All authors read and approved the manuscript.

Competing interests The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://​doi.​org/​

10.​1038/​s41598-​023-​35205-5.

Correspondence and requests for materials should be addressed to R.F.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and

institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International

License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons licence, and indicate if changes were made. The images or other third party material in this

article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the

material. If material is not included in the article’s Creative Commons licence and your intended use is not

permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from

the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023

Scientific Reports |

Vol:.(1234567890)

(2023) 13:8599 |

https://doi.org/10.1038/s41598-023-35205-5

12

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る