リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Novel insights into host specificity of Pyricularia oryzae and Pyricularia grisea in the infection of gramineous plant roots」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Novel insights into host specificity of Pyricularia oryzae and Pyricularia grisea in the infection of gramineous plant roots

Xiang, Zikai Okada, Daiki Asuke, Soichiro Nakayashiki, Hitoshi Ikeda, Kenichi 神戸大学

2022.11.01

概要

Pyricularia oryzae and Pyricularia grisea are pathogens that cause blast disease in various monocots. It has been reported that P. oryzae infects the leaves and roots of rice via different mechanisms. However, it is unclear to what extent the tissue types affect the host specificities of P. oryzae and P. grisea. Here, we evaluated the tissue-specific infection strategies of P. oryzae and P. grisea in various gramineous plants. Generally, mycelial plug inoculation caused root browning but the degree of browning did not simply follow the disease index on leaves. Interestingly, the Triticum and Digitaria pathotypes caused strong root growth inhibition in rice, wheat, and barley. Moreover, the Digitaria pathotype inhibited root branching only in rice. Culture filtrate reproduced these inhibitory effects on root, suggesting that some secreted molecules are responsible for the inhibitions. Observation of root sections revealed that most of the infection hyphae penetrated intercellular spaces and further extended into root cells, regardless of pathotype and host plant. The infection hyphae of Digitaria and Triticum pathotypes tended to localize in the outer layer of rice roots, but not in those of wheat and barley roots. The infection hyphae of the Oryza pathotype were distributed in both the intercellular and intracellular spaces of rice root cells. Pathogenesis-related genes and reactive oxygen species accumulation were induced after root inoculation with all combinations. These results suggest that resistance reactions were induced in the roots of gramineous plants against the infection with Pyricularia isolates but failed to prevent fungal invasion.

この論文で使われている画像

参考文献

Bergero, R., Perotto, S., Girlanda, M., Vidano, G. & Luppi, A.M. (2000) Ericoid mycorrhizal fungi are common root associates of a Mediterranean ectomycorrhizal plant (Quercus ilex). Molecular Ecology, 9, 1639–1649.

Dufresne, M. & Osbourn, A.E. (2001) Definition of tissue-specific and general requirements for plant infection in a phytopathogenic fun-gus. Molecular Plant-Microbe Interactions, 14, 300–307.

Ejiri, M., Fukao, T., Miyashita, T. & Shiono, K. (2021) A barrier to radial oxygen loss helps the root system cope with waterlogging-induced hypoxia. Breeding Science, 71, 40–50.

Hayashi, N. (2005) Rice blast fungus, MAFF microorganism genetic re- sources manual No. 18. Tsukuba, Ibaraki: National Institute of Agrobiological Sciences.

Howard, R.J. & Ferrari, M.A. (1989) Role of melanin in appressorium function. Experimental Mycology, 13, 403–418.

Howard, R.J., Ferrari, M.A., Roach, D.H. & Money, N.P. (1991) Penetration of hard substrates by a fungus employing enormous turgor pres- sures. Proceedings of the National Academy of Sciences of the United States of America, 88, 11281–11284.

Ikeda, K., Park, P. & Nakayashiki, H. (2019) Cell biology in phytopatho- genic fungi during host infection: commonalities and differences. Journal of General Plant Pathology, 85, 163–173.

Inoue, Y., Vy, T.T.P., Yoshida, K., Asano, H., Mitsuoka, C., Asuke, S. et al. (2017) Evolution of the wheat blast fungus through functional losses in a host specificity determinant. Science, 357, 80–83.

Jones, J.D.G. & Dangl, J.L. (2006) The plant immune system. Nature, 444, 323–329.

Jung, G.Y., Park, J.Y., Choi, H.J., Yoo, S.-J., Park, J.-K. & Jung, H.W. (2016) A rice gene homologous to Arabidopsis AGD2-LIKE DEFENSE1 participates in disease resistance response against infection with Magnaporthe oryzae. The Plant Pathology Journal, 32, 357–362.

Kano, A., Gomi, K., Yamasaki-Kokudo, Y., Satoh, M., Fukumoto, T., Ohtani, K. et al. (2010) A rare sugar, D -allose, confers resistance to rice bacterial blight with upregulation of defense-related genes in Oryza sativa. Phytopathology, 100, 85–90.

Kato, H., Yamamoto, M., Yamaguchi-Ozaki, T., Kadouchi, H., Iwamoto, Y., Nakayashiki, H. et al. (2000) Pathogenicity, mating ability and DNA restriction fragment length polymorphisms of Pyricularia pop- ulations isolated from Gramineae, Bambusideae and Zingiberaceae plants. Journal of General Plant Pathology, 66, 30–47.

Kitomi, Y., Ito, H., Hobo, T., Aya, K., Kitano, H. & Inukai, Y. (2011) The auxin re- sponsive AP2/ERF transcription factor CROWN ROOTLESS5 is involved in crown root initiation in rice through the induction of OsRR1, a type-a response regulator of cytokinin signaling. The Plant Journal, 67, 472–484.

Kotula, L., Ranathunge, K. & Steudle, E. (2009) Apoplastic barriers ef- fectively block oxygen permeability across outer cell layers of rice roots under deoxygenated conditions: roles of apoplastic pores and of respiration. New Phytologist, 184, 909–917.

Kreszies, T., Schreiber, L. & Ranathunge, K. (2018) Suberized transport barriers in Arabidopsis, barley and rice roots: from the model plant to crop species. Journal of Plant Physiology, 227, 75–83.

Levine, A., Tenhaken, R., Dixon, R. & Lamb, C.J. (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resis- tance response. Cell, 79, 583–593.

Li, W., Wang, B., Wu, J., Lu, G., Hu, Y., Zhang, X. et al. (2009) The Magnaporthe oryzae avirulence gene AvrPiz-t encodes a predicted secreted protein that triggers the immunity in rice mediated by the blast resistance gene Piz-t. Molecular Plant-Microbe Interactions, 22, 411–420.

Li, J., Wang, Q., Li, C., Bi, Y., Fu, X. & Wang, R. (2019) Novel haplotypes and networks of AVR-Pik alleles in Magnaporthe oryzae. BMC Plant Biology, 19, 204.

Manandhar, H.K., Mathur, S.B., Smedegaard-Petersen, V. & Thordal- Christensen, H. (1999) Accumulation of transcripts for pathogenesis–related proteins and peroxidase in rice plants trig- gered byPyricularia oryzae, Bipolaris sorokiniana and UV light. Physiological and Molecular Plant Pathology, 55, 289–295.

Marcel, S., Sawers, R., Oakeley, E., Angliker, H. & Paszkowski, U. (2010) Tissue-adapted invasion strategies of the rice blast fungus Magnaporthe oryzae. The Plant Cell, 22, 3177–3187.

McDonald, M.P., Galwey, N.W. & Colmer, T.D. (2001) Waterlogging toler- ance in the tribe Triticeae: the adventitious roots of Critesion mari- num have a relatively high porosity and a barrier to radial oxygen loss: root aeration in species from the tribe Triticeae. Plant, Cell & Environment, 24, 585–596.

McDonald, M.P., Galwey, N.W., Ellneskog-Staam, P. & Colmer, T.D. (2001) Evaluation of Lophopyrum elongatum as a source of genetic diversity to increase the waterlogging tolerance of hexaploid wheat (Triticum aestivum). New Phytologist, 151, 369–380.

Meepagala, K.M., Clausen, B.M., Johnson, R.D., Wedge, D.E. & Duke, S.O. (2019) A phytotoxic and antifungal metabolite (pyrichalasin H) from a fungus infecting Brachiaria eruciformis (signal grass). Journal of Agricultural Chemistry and Environment, 08, 115–128.

Muhae-Ud-Din, G., Chen, D., Liu, T., Chen, W. & Gao, L. (2020) Characterization of the wheat cultivars against Tilletia contro- versa Kühn, causal agent of wheat dwarf bunt. Scientific Reports, 10, 9029.

Murata, N., Aoki, T., Kusaba, M., Tosa, Y. & Chuma, I. (2014) Various species of Pyricularia constitute a robust clade distinct from Magnaporthe salvinii and its relatives in Magnaporthaceae. Journal of General Plant Pathology, 80, 66–72.

Naveed, Z.A., Wei, X., Chen, J., Mubeen, H. & Ali, G.S. (2020) The PTI to ETI continuum in Phytophthora plant interactions. Frontiers in Plant Science, 11, 593905.

Ouyang, W., Yin, X., Yang, J. & Struik, P.C. (2020) Comparisons with wheat reveal root anatomical and histochemical constraints of rice under water-deficit stress. Plant and Soil, 452, 547–568.

Paszkowski, U., Kroken, S., Roux, C. & Briggs, S.P. (2002) Rice phosphate transporters include an evolutionarily divergent gene specifically activated in arbuscular mycorrhizal symbiosis. Proceedings of the National Academy of Sciences of the United States of America, 99, 13324–13329.

Perotto, S., Girlanda, M. & Martino, E. (2002) Ericoid mycorrhizal fungi: some new perspectives on old acquaintances. In: Smith, S.E. & Smith, F.A. (Eds.) Diversity and integration in mycorrhizas. Dordrecht: Springer Netherlands, pp. 41–53.

Qu, S., Liu, G., Zhou, B., Bellizzi, M., Zeng, L., Dai, L. et al. (2006) The broad-spectrum blast resistance gene Pi9 encodes a nucleotide- binding site–leucine-rich repeat protein and is a member of a multi- gene family in rice. Genetics, 172, 1901–1914.

Ranathunge, K., Kim, Y.X., Wassmann, F., Kreszies, T., Zeisler, V. & Schreiber, L. (2017) The composite water and solute transport of barley (Hordeum vulgare) roots: effect of suberized barriers. Annals of Botany, 119, 629–643.

Sesma, A. & Osbourn, A.E. (2004) The rice leaf blast pathogen undergoes developmental processes typical of root-infecting fungi. Nature, 431, 582–586.

Takahashi, A., Hayashi, N., Miyao, A. & Hirochika, H. (2010) Unique fea- tures of the rice blast resistance Pish locus revealed by large scale retrotransposon-tagging. BMC Plant Biology, 10, 175.

Takumi, S., Okada, M., Michikawa, A., Miki, Y. & Yoshida, K. (2017) High-quality RNA isolation from wheat immature grains. Wheat Information Service, 124, 4.

Tanaka, A., Christensen, M.J., Takemoto, D., Park, P. & Scott, B. (2006) Reactive oxygen species play a role in regulating a fungus– perennial ryegrass mutualistic interaction. The Plant Cell, 18, 1052–1066.

Thines, E., Weber, R.W.S. & Talbot, N.J. (2000) MAP kinase and protein kinase A–dependent mobilization of triacylglycerol and glycogen during appressorium turgor generation by Magnaporthe grisea. The Plant Cell, 12, 1703–1718.

Tian, L., Shi, S., Nasir, F., Chang, C., Li, W., Tran, L.-S.P. et al. (2018) Comparative analysis of the root transcriptomes of cultivated and wild rice varieties in response to Magnaporthe oryzae infection revealed both common and species-specific pathogen responses. Rice, 11, 26.

Tosa, Y. & Chuma, I. (2014) Classification and parasitic specialization of blast fungi. Journal of General Plant Pathology, 80, 202–209.

Tosa, Y., Osue, J., Eto, Y., Oh, H.-S., Nakayashiki, H., Mayama, S. et al. (2005) Evolution of an avirulence gene, AVR1-CO39, concomitant with the evolution and differentiation of Magnaporthe oryzae. Molecular Plant-Microbe Interactions, 18, 1148–1160.

Tsunematsu, H., Yanoria, M.J.T., Ebron, L.A., Hayashi, N., Ando, I., Kato, H. et al. (2000) Development of monogenic lines of rice for blast resistance. Breeding Science, 50, 229–234.

Tsurushima, T., Don, L.D., Kawashima, K., Murakami, J., Nakayashiki, H., Tosa, Y. et al. (2005) Pyrichalasin H production and pathogenicity of Digitaria-specific isolates of Pyricularia grisea. Molecular Plant Pathology, 6, 605–613.

Tucker, S.L., Besi, M.I., Galhano, R., Franceschetti, M., Goetz, S., Lenhert, S. et al. (2010) Common genetic pathways regulate organ-specific infection-related development in the rice blast fungus. The Plant Cell, 22, 953–972.

Wang, Y., Zhao, J., Zhang, L., Wang, P., Wang, S., Wang, H. et al. (2016) Analysis of the diversity and function of the alleles of the rice blast resistance genes Piz-t, Pita and Pik in 24 rice cultivars. Journal of Integrative Agriculture, 15, 1423–1431.

Wilson, R.A. & Talbot, N.J. (2009) Under pressure: investigating the biology of plant infection by Magnaporthe oryzae. Nature Reviews Microbiology, 7, 185–195.

Wu, Y., Xiao, N., Yu, L., Pan, C., Li, Y., Zhang, X. et al. (2015) Combination patterns of major R genes determine the level of resistance to the M. oryzae in rice (Oryza sativa L.). PLoS One, 10, e0126130.

Yuan, B., Zhai, C., Wang, W., Zeng, X., Xu, X., Hu, H. et al. (2011) The Pik-p resistance to Magnaporthe oryzae in rice is mediated by a pair of closely linked CC-NBS-LRR genes. Theoretical and Applied Genetics, 122, 1017–1028.

Zhou, B., Qu, S., Liu, G., Dolan, M., Sakai, H., Lu, G. et al. (2006) The eight amino-acid differences within three leucine-rich repeats between Pi2 and Piz-t resistance proteins determine the resistance specific- ity to Magnaporthe grisea. Molecular Plant-Microbe Interactions, 19, 1216–1228.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る