リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Radiative properties of the first galaxies: rapid transition between UV and infrared bright phases」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Radiative properties of the first galaxies: rapid transition between UV and infrared bright phases

矢島, 秀伸 Arata, Shohei Nagamine, Kentaro Li, Yuexing Khochfar, Sadegh 筑波大学 DOI:10.1093/mnras/stz1887

2020.03.17

概要

Recent observations have successfully detected UV-bright and infrared-bright galaxies in the epoch of reionization. However, the origin of their radiative properties has not been understood yet. Combining cosmological hydrodynamic simulations and radiative transfer calculations, we present predictions of multiwavelength radiative properties of the first galaxies at z ∼ 6–15. Using zoom-in initial conditions, we investigate three massive galaxies and their satellites in different environment and halo masses at z = 6: Mh=2.4×1010⁠, 1.6×1011⁠, and 0.7×1012M⊙⁠. We find that most of the gas and dust are ejected from star-forming regions by supernova feedback, which allows the UV photons to escape. We show that the peak of the spectral energy distribution (SED) rapidly changes between UV and infrared wavelengths on a time-scale of ∼ 100 Myr due to intermittent star formation and feedback, and the escape fraction of UV photons fluctuates in the range of 0.2–0.8 at z < 10 with a time-averaged value of 0.3. When dusty gas covers the star-forming regions, the galaxies become bright in the observed-frame sub-millimeter wavelengths. We predict the detectability of high-z galaxies with the Atacama Large Millimeter Array (ALMA). For a sensitivity limit of 0.1mJy at 850μm⁠, the detection probability of galaxies in haloes Mh≳1011M⊙ at z ≲ 7 exceeds fifty per cent. We argue that supernova feedback can produce the observed diversity of SEDs for high-z galaxies.

この論文で使われている画像

関連論文

参考文献

Andre P., Ward-Thompson D., Motte F., 1996, A&A, 314, 625

Aoyama S., Hou K.-C., Shimizu I., Hirashita H., Todoroki K., Choi J.-H.,

Nagamine K., 2017, MNRAS, 466, 105

Aoyama S., Hou K.-C., Hirashita H., Nagamine K., Shimizu I., 2018,

MNRAS, 478, 4905

Aoyama S., Hirashita H., Lim C.-F., Chang Y.-Y., Wang W.-H., Nagamine

K., Hou K.-C., Shimizu I., 2019a, MNRAS, 484, 1852

Aoyama S., Hirashita H., Nagamine K., 2019b, preprint (arXiv:1906.01917)

Arata S., Yajima H., Nagamine K., 2018, MNRAS, 475, 4252

Asano R. S., Takeuchi T. T., Hirashita H., Inoue A. K., 2013, Earth Planets

Space, 65, 213

Barrow K. S. S., Wise J. H., Aykutalp A., O’Shea B. W., Norman M. L., Xu

H., 2018, MNRAS, 474, 2617

Behrens C., Pallottini A., Ferrara A., Gallerani S., Vallini L., 2018, MNRAS,

477, 552

Borthakur S., Heckman T. M., Leitherer C., Overzier R. A., 2014, Science,

346, 216

Bouwens R. J. et al., 2015, ApJ, 803, 34

Bouwens R. J. et al., 2016, ApJ, 833, 72

Bowler R. A. A., Bourne N., Dunlop J. S., McLure R. M., McLeod D. J.,

2018, MNRAS, 481, 1631

Calzetti D., Armus L., Bohlin R. C., Kinney A. L., Koornneef J., StorchiBergmann T., 2000, ApJ, 533, 682

Capak P. L. et al., 2015, Nature, 522, 455

Casey C. M., Hodge J., Zavala J. A., Spilker J., da Cunha E., Staguhn J.,

Finkelstein S. L., Drew P., 2018, ApJ, 862, 78

Chabrier G., 2003, PASP, 115, 763

Chapman S. C., Blain A. W., Smail I., Ivison R. J., 2005, ApJ, 622, 772

Chiaki G., Yoshida N., Kitayama T., 2013, ApJ, 762, 50

Chiaki G., Marassi S., Nozawa T., Yoshida N., Schneider R., Omukai K.,

Limongi M., Chieffi A., 2015, MNRAS, 446, 2659

Crain R. A. et al., 2015, MNRAS, 450, 1937

Cullen F., McLure R. J., Khochfar S., Dunlop J. S., Dalla Vecchia C., 2017,

MNRAS, 470, 3006

Cullen F. et al., 2018, MNRAS, 476, 3218

Cullen F. et al., 2019, MNRAS, 487, 2038

Dalla Vecchia C., Schaye J., 2012, MNRAS, 426, 140

Davis A. J., Khochfar S., Dalla Vecchia C., 2014, MNRAS, 443, 985

Dawson S. et al., 2004, ApJ, 617, 707

de Barros S. et al., 2016, A&A, 585, A51

Draine B. T. et al., 2007, ApJ, 663, 866

El-Badry K., Wetzel A., Geha M., Hopkins P. F., Kereˇs D., Chan T. K.,

Faucher-Gigu`ere C.-A., 2016, ApJ, 820, 131

MNRAS 488, 2629–2643 (2019)

Downloaded from https://academic.oup.com/mnras/article-abstract/488/2/2629/5530793 by University of Library and Information Science user on 17 March 2020

(i) In the first galaxies, the SN feedback ejects most gas and dust

from galaxies, resulting in the intermittent star formation history.

This causes the large fluctuation of escape fraction of UV photons.

The escape fraction of Halo-11 changes in the range of ∼0.2–0.8

at z < 10. As the halo becomes more massive, the fluctuation

is suppressed, and the escape fraction remains low at 0.2. The

transition redshifts are ∼8.5 for Halo-12 and ∼7.5 for Halo-11.

In the case of Halo-10, the escape fraction keeps fluctuating down

to z = 6.

(ii) Stellar UV radiation absorbed by dust is reprocessed into IR

thermal emission. Therefore, the IR flux from galaxies also change

with time as the UV escape fraction fluctuates. This fluctuation of

the IR flux affects the detectability in sub-mm observations. Using

all satellite galaxies within the zoom-in regions, we calculate the

detectability by ALMA telescope. If we set the detection threshold

to 0.1 mJy at 850 μm, the detectability are 0.5 for galaxies with

the halo mass of  1011 M at z  7.

(iii) We calculate the three-dimensional structure of dust temperature, and derive SEDs. By using the peak wavelength of infrared

flux, we estimate the typical dust temperature of modelled galaxies.

The galaxies with LIR  1011 L have Td ∼ 60 K that is higher than

that of observed galaxies at z < 3 (Hwang et al. 2010). Since it is

difficult to measure the dust temperature of observed galaxies at z

≥ 6, the dust temperature of ∼ 40 K is frequently assumed in the

observations (e.g. Watson et al. 2015). Our simulation suggests that

the dust temperatures for high-z galaxies are somewhat higher than

the assumed ones, which will change the estimated dust masses and

SFRs.

(iv) The half-light radius (re ) at UV wavelength fluctuates in the

range of re /rvir ∼ 0.02–0.1, and it increases with time. At z ∼ 6–

8, re becomes ∼ 1 kpc (physical), and the bright galaxies in our

simulations (MUV < −15) has the relation re ∝ Lβ , where β ∼

0.4. These are consistent with the observations of Kawamata et al.

(2018). When the surface brightness of galaxies is extended, some

parts of UV flux can be lost below observational threshold due to

cosmological surface brightness dimming.

(v) We compare our fiducial model (Halo-11) with the different

models with a low star formation amplitude factor (Halo-11-lowSF)

and without the SN feedback (Halo-11-noSN). In cases of Halo-11lowSF and Halo-11-noSN, massive dusty gas accumulates at the

Galactic Centre due to the weak or no SN feedback. This causes

higher SFR and lower UV escape fraction than the fiducial model.

Therefore, the IR flux of Halo-11-lowSF and Halo-11-noSN is

higher than that of Halo-11. Thus we argue that the star formation

and feedback models for the first galaxies could be constrained by

future observations.

2641

2642

S. Arata et al.

MNRAS 488, 2629–2643 (2019)

Mostardi R. E., Shapley A. E., Steidel C. C., Trainor R. F., Reddy N. A.,

Siana B., 2015, ApJ, 810, 107

Mo H. J., Mao S., White S. D. M., 1998, MNRAS, 295, 319

Nagamine K., Wolfe A. M., Hernquist L., 2006, ApJ, 647, 60

Narayanan D., Conroy C., Dave R., Johnson B., Popping G., 2018, ApJ,

869, 70

Nozawa T., Kozasa T., Habe A., Dwek E., Umeda H., Tominaga N., Maeda

K., Nomoto K., 2007, ApJ, 666, 955

Oesch P. A. et al., 2016, ApJ, 819, 129

Okamoto T., Shimizu I., Yoshida N., 2014, PASJ, 66, 70

Ono Y. et al., 2012, ApJ, 744, 83

Ono Y. et al., 2018, PASJ, 70, S10

Ouchi M., Yamada T., Kawai H., Ohta K., 1999, ApJ, 517, L19

Ouchi M. et al., 2003, ApJ, 582, 60

Ouchi M. et al., 2009, ApJ, 706, 1136

Ouchi M. et al., 2010, ApJ, 723, 869

Paardekooper J.-P., Khochfar S., Dalla Vecchia C., 2013, MNRAS, 429, L94

Paardekooper J.-P., Khochfar S., Dalla Vecchia C., 2015, MNRAS, 451,

2544

Pillepich A. et al., 2018, MNRAS, 475, 648

Ricotti M., Parry O. H., Gnedin N. Y., 2016, ApJ, 831, 204

Riechers D. A. et al., 2013, Nature, 496, 329

Safranek-Shrader C., Agarwal M., Federrath C., Dubey A., Milosavljevi´c

M., Bromm V., 2012, MNRAS, 426, 1159

Scannapieco C., Tissera P. B., White S. D. M., Springel V., 2008, MNRAS,

389, 1137

Schaye J., Dalla Vecchia C., 2008, MNRAS, 383, 1210

Schaye J. et al., 2010, MNRAS, 402, 1536

Schaye J. et al., 2015, MNRAS, 446, 521

Schneider R., Omukai K., Inoue A. K., Ferrara A., 2006, MNRAS, 369,

1437

Shapley A. E., Steidel C. C., Pettini M., Adelberger K. L., 2003, ApJ, 588,

65

Sheth R. K., Tormen G., 2002, MNRAS, 329, 61

Shibuya T., Kashikawa N., Ota K., Iye M., Ouchi M., Furusawa H.,

Shimasaku K., Hattori T., 2012, ApJ, 752, 114

Shimasaku K. et al., 2006, PASJ, 58, 313

Siana B. et al., 2007, ApJ, 668, 62

Silk J., 2013, ApJ, 772, 112

Solomon P. M., Rivolo A. R., Barrett J., Yahil A., 1987, ApJ, 319, 730

Springel V., 2005, MNRAS, 364, 1105

Springel V., Hernquist L., 2003, MNRAS, 339, 289

Springel V., White S. D. M., Tormen G., Kauffmann G., 2001, MNRAS,

328, 726

Steidel C. C., Giavalisco M., Dickinson M., Adelberger K. L., 1996, AJ,

112, 352

Steidel C. C., Pettini M., Adelberger K. L., 2001, ApJ, 546, 665

Steidel C. C., Adelberger K. L., Shapley A. E., Pettini M., Dickinson M.,

Giavalisco M., 2003, ApJ, 592, 728

Tacconi L. J. et al., 2013, ApJ, 768, 74

Tamura Y. et al., 2019, ApJ, 874, 27

Todini P., Ferrara A., 2001, MNRAS, 325, 726

Trebitsch M., Blaizot J., Rosdahl J., Devriendt J., Slyz A., 2017, MNRAS,

470, 224

Vanzella E. et al., 2012, ApJ, 751, 70

Vanzella E. et al., 2015, A&A, 576, A116

Vanzella E. et al., 2016, ApJ, 825, 41

Vasei K. et al., 2016, ApJ, 831, 38

Watson D., Christensen L., Knudsen K. K., Richard J., Gallazzi A.,

Michałowski M. J., 2015, Nature, 519, 327

Weingartner J. C., Draine B. T., 2001, ApJ, 548, 296

Wilkins S. M., Feng Y., Di-Matteo T., Croft R., Stanway E. R., Bunker A.,

Waters D., Lovell C., 2016, MNRAS, 460, 3170

Wise J. H., Turk M. J., Norman M. L., Abel T., 2012, ApJ, 745, 50

Wyithe J. S. B., Loeb A., 2011, MNRAS, 413, L38

Yajima H., Choi J.-H., Nagamine K., 2011, MNRAS, 412, 411

Yajima H., Choi J.-H., Nagamine K., 2012, MNRAS, 427, 2889

Downloaded from https://academic.oup.com/mnras/article-abstract/488/2/2629/5530793 by University of Library and Information Science user on 17 March 2020

Faisst A. L. et al., 2017, ApJ, 847, 21

Fall S. M., Romanowsky A. J., 2013, ApJ, 769, L26

Field G. B., 1965, ApJ, 142, 531

Finkelstein S. L. et al., 2013, Nature, 502, 524

Finkelstein S. L. et al., 2015, ApJ, 810, 71

Genel S., Fall S. M., Hernquist L., Vogelsberger M., Snyder G. F., RodriguezGomez V., Sijacki D., Springel V., 2015, ApJ, 804, L40

Genzel R. et al., 2010, MNRAS, 407, 2091

Grazian A. et al., 2011, A&A, 532, A33

Greif T. H., Johnson J. L., Klessen R. S., Bromm V., 2008, MNRAS, 387,

1021

Gronwall C. et al., 2007, ApJ, 667, 79

Hashimoto T. et al., 2018, Nature, 557, 392

Hashimoto T. et al., 2019, PASJ, 70, preprint (arXiv:1806.00486)

Hirashita H., Kuo T.-M., 2011, MNRAS, 416, 1340

Hopkins P. F., Kereˇs D., O˜norbe J., Faucher-Gigu`ere C.-A., Quataert E.,

Murray N., Bullock J. S., 2014, MNRAS, 445, 581

Hou K.-C., Hirashita H., Nagamine K., Aoyama S., Shimizu I., 2017,

MNRAS, 469, 870

Hou K.-C., Aoyama S., Hirashita H., Nagamine K., Shimizu I., 2019,

MNRAS, 485, 1727

Hu E. M., Cowie L. L., Capak P., McMahon R. G., Hayashino T., Komiyama

Y., 2004, AJ, 127, 563

Hwang H. S. et al., 2010, MNRAS, 409, 75

Inoue T., Omukai K., 2015, ApJ, 805, 73

Inoue A. K. et al., 2016, Science, 352, 1559

Iwata I. et al., 2009, ApJ, 692, 1287

Izotov Y. I., Orlitov´a I., Schaerer D., Thuan T. X., Verhamme A., Guseva N.

G., Worseck G., 2016, Nature, 529, 178

Jaacks J., Choi J.-H., Nagamine K., Thompson R., Varghese S., 2012a,

MNRAS, 420, 1606

Jaacks J., Nagamine K., Choi J. H., 2012b, MNRAS, 427, 403

Johnson J. L., Dalla Vecchia C., Khochfar S., 2013, MNRAS, 428, 1857

Kashikawa N. et al., 2006, ApJ, 648, 7

Kawamata R., Ishigaki M., Shimasaku K., Oguri M., Ouchi M., Tanigawa

S., 2018, ApJ, 855, 4

Kennicutt R. C., Jr, 1998, ARA&A, 36, 189

Khochfar S., Silk J., 2011, MNRAS, 410, L42

Kim J.-H. et al., 2018, MNRAS, 474, 4232

Kimm T., Cen R., 2014, ApJ, 788, 121

Kov´acs A., Chapman S. C., Dowell C. D., Blain A. W., Ivison R. J., Smail

I., Phillips T. G., 2006, ApJ, 650, 592

Laor A., Draine B. T., 1993, ApJ, 402, 441

Laporte N. et al., 2017, ApJ, 837, L21

Leitet E., Bergvall N., Piskunov N., Andersson B.-G., 2011, A&A, 532,

A107

Leitet E., Bergvall N., Hayes M., Linn´e S., Zackrisson E., 2013, A&A, 553,

A106

Li Y. et al., 2008, ApJ, 678, 41

Ma X., Kasen D., Hopkins P. F., Faucher-Gigu`ere C.-A., Quataert E., Kereˇs

D., Murray N., 2015, MNRAS, 453, 960

Ma X., Hopkins P. F., Kasen D., Quataert E., Faucher-Gigu`ere C.-A., Kereˇs

D., Murray N., Strom A., 2016, MNRAS, 459, 3614

Ma X. et al., 2018a, MNRAS, 477, 219

Ma X. et al., 2018b, MNRAS, 478, 1694

Ma X. et al., 2019, MNRAS, 487, 1844

Maio U., Khochfar S., Johnson J. L., Ciardi B., 2011, MNRAS, 414, 1145

Maiolino R., Schneider R., Oliva E., Bianchi S., Ferrara A., Mannucci F.,

Pedani M., Roca Sogorb M., 2004, Nature, 431, 533

Marrone D. P. et al., 2018, Nature, 553, 51

McKee C. F., Ostriker J. P., 1977, ApJ, 218, 148

McKinnon R., Vogelsberger M., Torrey P., Marinacci F., Kannan R., 2018,

MNRAS, 478, 2851

McLure R. J. et al., 2013, MNRAS, 432, 2696

Meurer G. R., Heckman T. M., Calzetti D., 1999, ApJ, 521, 64

Micheva G., Iwata I., Inoue A. K., Matsuda Y., Yamada T., Hayashino T.,

2017, MNRAS, 465, 316

Radiative properties of the first galaxies

Yajima H., Ricotti M., Park K., Sugimura K., 2017b, ApJ, 846, 3

Yajima H., Sugimura K., Hasegawa K., 2018, MNRAS, 477, 5406

Yang M., Greve T. R., Dowell C. D., Borys C., 2007, ApJ, 660, 1198

Younger J. D. et al., 2009, ApJ, 704, 803

Zavala J., Okamoto T., Frenk C. S., 2008, MNRAS, 387, 364

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 488, 2629–2643 (2019)

Downloaded from https://academic.oup.com/mnras/article-abstract/488/2/2629/5530793 by University of Library and Information Science user on 17 March 2020

Yajima H., Li Y., Zhu Q., Abel T., Gronwall C., Ciardullo R., 2014a,

MNRAS, 440, 776

Yajima H., Nagamine K., Thompson R., Choi J.-H., 2014b, MNRAS, 439,

3073

Yajima H., Li Y., Zhu Q., Abel T., 2015a, ApJ, 801, 52

Yajima H., Shlosman I., Romano-D´ıaz E., Nagamine K., 2015b, MNRAS,

451, 418

Yajima H., Nagamine K., Zhu Q., Khochfar S., Dalla Vecchia C., 2017a,

ApJ, 846, 30

2643

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る