リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「ALMA uncovers the [C ii] emission and warm dust continuum in a z = 8.31 Lyman break galaxy」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

ALMA uncovers the [C ii] emission and warm dust continuum in a z = 8.31 Lyman break galaxy

Bakx, Tom J L C Tamura, Yoichi Hashimoto, Takuya Inoue, Akio K Lee, Minju M Mawatari, Ken Ota, Kazuaki Umehata, Hideki Zackrisson, Erik Hatsukade, Bunyo Kohno, Kotaro Matsuda, Yuichi Matsuo, Hiroshi Okamoto, Takashi Shibuya, Takatoshi Shimizu, Ikkoh Taniguchi, Yoshiaki Yoshida, Naoki 名古屋大学

2020.04

概要

We report on the detection of the [C ii] 157.7 μm emission from the Lyman break galaxy (LBG) MACS0416_Y1 at z = 8.3113, by using the Atacama Large Millimeter/submillimeter Array (ALMA). The luminosity ratio of [O iii] 88 μm (from previous campaigns) to [C ii] is 9.3 ± 2.6, indicative of hard interstellar radiation fields and/or a low covering fraction of photodissociation regions. The emission of [C ii] is cospatial to the 850 μm dust emission (90 μm rest frame, from previous campaigns), however the peak [C ii] emission does not agree with the peak [O iii] emission, suggesting that the lines originate from different conditions in the interstellar medium. We fail to detect continuum emission at 1.5 mm (160 μm rest frame) down to 18 μJy (3σ). This non-detection places a strong limits on the dust spectrum, considering the 137 ± 26 μJy continuum emission at 850 μm. This suggests an unusually warm dust component (T > 80 K, 90 per cent confidence limit), and/or a steep dust-emissivity index (βdust > 2), compared to galaxy-wide dust emission found at lower redshifts (typically T ∼ 30–50 K, βdust ∼ 1–2). If such temperatures are common, this would reduce the required dust mass and relax the dust production problem at the highest redshifts. We therefore warn against the use of only single-wavelength information to derive physical properties, recommend a more thorough examination of dust temperatures in the early Universe, and stress the need for instrumentation that probes the peak of warm dust in the Epoch of Reionization.

この論文で使われている画像

参考文献

Appleton P. N. et al., 2013, ApJ, 777, 66

Arata S., Yajima H., Nagamine K., Li Y., Khochfar S., 2019, MNRAS, 488,

2629

Arata S., Yajima H., Nagamine K., Abe M., Khochfar S., 2020, preprint

(arXiv:eprint)

Armus L. et al., 2009, PASP, 121, 559

Asano R. S., Takeuchi T. T., Hirashita H., Inoue A. K., 2013, Earth Planets

Space, 65, 213

Avni Y., 1976, ApJ, 210, 642

Barisic I. et al., 2017, ApJ, 845, 41

Behrens C., Pallottini A., Ferrara A., Gallerani S., Vallini L., 2018, MNRAS,

477, 552

Belitsky V. et al., 2018, A&A, 611, A98

Binney J., Tremaine S., 2008, Galactic Dynamics, 2nd edn, Section on

velocity profile.

Bouwens R. J. et al., 2015, ApJ, 803, 34

Bouwens R. J. et al., 2016, ApJ, 833, 72

Bowler R. A. A., McLure R. J., Dunlop J. S., McLeod D. J., Stanway E. R.,

Eldridge J. J., Jarvis M. J., 2017, MNRAS, 469, 448

Bradaˇc M. et al., 2017, ApJ, 836, L2

Capak P. L. et al., 2015, Nature, 522, 455

Carilli C. L., Walter F., 2013, ARA&A, 51, 105

Carniani S. et al., 2017, A&A, 605, A42

Carniani S. et al., 2018, MNRAS, 478, 1170

Castellano M. et al., 2016, A&A, 590, A31

Ceccarelli C., Viti S., Balucani N., Taquet V., 2018, MNRAS, 476, 1371

Chabrier G., 2003, PASP, 115, 763

Clements D. L. et al., 2018, MNRAS, 475, 2097

Cormier D. et al., 2015, A&A, 578, A53

Cormier D. et al., 2019, A&A, 626, A23

Cousin M., Guillard P., Lehnert M. D., 2019, A&A, 627, A131

da Cunha E. et al., 2013, ApJ, 766, 13

Dayal P., Ferrara A., 2018, Phys. Rep., 780, 1

de Looze I. et al., 2014, A&A, 568, A62

MNRAS 493, 4294–4307 (2020)

Downloaded from https://academic.oup.com/mnras/article-abstract/493/3/4294/5781612 by Nagoya University user on 31 July 2020

a problem for the analysis in the previous section, but also for

astronomical studies in general.

One of the main conclusions from Tamura et al. (2019) is

the existence of an older stellar population in MACS0416 Y1,

determined using a dust evolution model to explain its dust mass

and metallicity. The increase in dust temperature, combined with

the potential change in β, can increase the per-mass luminosity

of dust by 100-fold, as can be seen in Table 3, allowing the dust

temperature to significantly impact the study of high-redshift objects

in general. Moreover, the amount of dust seen in MACS0416 Y1

and other high-redshift galaxies (e.g. Hashimoto et al. 2019; Laporte

et al. 2019) suggests an extreme dust-production scenario, where

SNe have to produce dust at their maximum observed efficiency

to reproduce the previously observed dust masses (Le´sniewska &

Michałowski 2019). The increase in dust temperatures reduces the

required dust masses, and significantly relaxes the constraints on

the dust production mechanisms at high redshift.

For MACS0416 Y1 in particular, the decrease in dust mass is

not expected to significantly influence the age of the older stellar

component (∼300 Myr). While both the high metallicity and high

dust mass of MACS0416 Y1 seemed to require a high age (Tamura

et al. 2019), lowering the dust mass would still leave an intact

metallicity-based lower limit on the age. However, determining

the effects of a decrease in dust temperature on the older stellar

population requires extensive modelling using stellar population

synthesis models and dust production mechanisms, which is beyond

the scope of this paper.

The reduction of dust mass in MACS0416 Y1 and other highredshift galaxies due to increasing dust temperatures and/or β,

however, does not mean that the dust-obscured star formation

becomes less important. Arguably, it becomes more important, as

the dust spectrum would peak at shorter wavelengths (λpeak ≈ 40–

70 μm), which still remain largely unprobed in the high-redshift

Universe, both due to the lack of sensitive instrumentation (as well

as atmospheric opacity) in this wavelength range, and the lack of

bright spectral lines in this wavelength range (although [O III] at

52μm and [O I] at 63μm are available). These spectral lines are often

the main observational goal, where the dust continuum detection

occurs almost serendipitously. We therefore advise towards a more

thorough examination of dust temperatures in the early Universe, as

well as the need for future instrumentation that can probe the peak

of warm dust in the Epoch of Reionization, such as the planned

Origins Space Telescope6 mission (Meixner et al. 2019).

4305

4306

T. J. L. C. Bakx et al.

MNRAS 493, 4294–4307 (2020)

Meijerink R., Spaans M., Israel F. P., 2007, A&A, 461, 793

Meixner M. et al., 2019, preprint (arXiv:1912.06213)

Michałowski M. J., 2015, A&A, 577, A80

Nozawa T., Yoon S.-C., Maeda K., Kozasa T., Nomoto K., Langer N., 2014,

ApJ, 787, L17

Oesch P. A. et al., 2016, ApJ, 819, 129

Oesch P. A., Bouwens R. J., Illingworth G. D., Labb´e I., Stefanon M., 2018,

ApJ, 855, 105

Ota K. et al., 2014, ApJ, 792, 34

Pallottini A., Ferrara A., Gallerani S., Vallini L., Maiolino R., Salvadori S.,

2017a, MNRAS, 465, 2540

Pallottini A., Ferrara A., Bovino S., Vallini L., Gallerani S., Maiolino R.,

Salvadori S., 2017b, MNRAS, 471, 4128

Pallottini A. et al., 2019, MNRAS, 487, 1689

Planck Collaboration XI, 2014, A&A, 571, A11

Planck Collaboration XVI, 2016, A&A, 594, A13

Planck Collaboration VI, 2018, preprint (arXiv:1807.06209)

Sawicki M., 2012, PASP, 124, 1208

Schaerer D., Boone F., Zamojski M., Staguhn J., Dessauges-Zavadsky M.,

Finkelstein S., Combes F., 2015, A&A, 574, A19

Scoville N. et al., 2016, ApJ, 820, 83

Shibuya T. et al., 2018, PASJ, 70, S15

Smit R. et al., 2018, Nature, 553, 178

Smith M. W. L. et al., 2012, ApJ, 756, 40

Sobral D., Matthee J., Darvish B., Schaerer D., Mobasher B., R¨ottgering H.

J. A., Santos S., Hemmati S., 2015, ApJ, 808, 139

Sobral D. et al., 2019, MNRAS, 482, 2422

Solomon P. M., Vanden Bout P. A., 2005, ARA&A, 43, 677

Stacey G. J., 2011, IEEE Trans. Terahertz Sci. Technol., 1, 241

Stacey G. J., Geis N., Genzel R., Lugten J. B., Poglitsch A., Sternberg A.,

Townes C. H., 1991, ApJ, 373, 423

Stacey G. J., Hailey-Dunsheath S., Ferkinhoff C., Nikola T., Parshley S. C.,

Benford D. J., Staguhn J. G., Fiolet N., 2010, ApJ, 724, 957

Tamura Y. et al., 2019, ApJ, 874, 27

Tegmark M., Silk J., Rees M. J., Blanchard A., Abel T., Palla F., 1997, ApJ,

474, 1

Vallini L., Ferrara A., Pallottini A., Gallerani S., 2017, MNRAS, 467,

1300

Walter F. et al., 2018, ApJ, 869, L22

Watson D., Christensen L., Knudsen K. K., Richard J., Gallazzi A.,

Michałowski M. J., 2015, Nature, 519, 327

Willott C. J., Carilli C. L., Wagg J., Wang R., 2015, ApJ, 807, 180

1 Division of Particle and Astrophysical Science, Graduate School of Science,

Nagoya University, Aichi 464-8602, Japan

Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka,

Tokyo 181-8588, Japan

3 Tomonaga Center for the History of the Universe (TCHoU), Faculty of Pure

and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571,

Japan

4 Department of Environmental Science and Technology, Faculty of Design

Technology, Osaka Sangyo University, 3-1-1, Nakagaito, Daito, Osaka 5748530, Japan

5 Department of Physics, School of Advanced Science and Engineering,

Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo,

Shinjuku, Tokyo 169-8555, Japan

6 Waseda Research Institute for Science and Engineering, Faculty of Science

and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 1698555, Japan

7 Max-Planck-Institut f¨

ur Extraterrestrische Physik (MPE), Giessenbachstr.,

D-85748 Garching, Germany

8 Institute for Cosmic Ray Research, The University of Tokyo, Kashiwa,

Chiba 277-8582, Japan

9 Kyoto University Research Administration Office, Yoshida-Honmachi,

Sakyo-ku, Kyoto 606-8501, Japan

10 The Open University of Japan, 2-11 Wakaba, Mihama-ku, Chiba 2618586, Japan

2 National

Downloaded from https://academic.oup.com/mnras/article-abstract/493/3/4294/5781612 by Nagoya University user on 31 July 2020

De Rossi M. E., Bromm V., 2019, ApJ, 883, 113

De Rossi M. E., Rieke G. H., Shivaei I., Bromm V., Lyu J., 2018, ApJ, 869,

Demyk K. et al., 2013, in Proc. Life Cycle of Dust in the Universe:

Observations, p. 44

D´ıaz-Santos T. et al., 2013, ApJ, 774, 68

D´ıaz-Santos T. et al., 2017, ApJ, 846, 32

Draine B. T., 2003, ApJ, 598, 1017

Dunlop J. S. et al., 2017, MNRAS, 466, 861

Dunne L., Eales S. A., 2001, MNRAS, 327, 697

Erb D. K., Steidel C. C., Shapley A. E., Pettini M., Reddy N. A., Adelberger

K. L., 2006, ApJ, 647, 128

Faisst A. L. et al., 2017, ApJ, 847, 21

Ferland G. J. et al., 2017, RMxAA, 53, 385

Ferrara A., Viti S., Ceccarelli C., 2016, MNRAS, 463, L112

Ferrara A., Hirashita H., Ouchi M., Fujimoto S., 2017, MNRAS, 471, 5018

Ferrara A., Vallini L., Pallottini A., Gallerani S., Carniani S., Kohandel M.,

Decataldo D., Behrens C., 2019, MNRAS, 489, 1

Finkelstein S. L. et al., 2015, ApJ, 810, 71

F¨orster Schreiber N. M. et al., 2009, ApJ, 706, 1364

Fujimoto S. et al., 2019, ApJ, 887, 107

Gall C. et al., 2014, Nature, 511, 326

Ginolfi M. et al., 2020, A&A, 633, A90

Gnerucci A. et al., 2011, A&A, 528, A88

Gonz´alez-L´opez J. et al., 2017a, A&A, 597, A41

Gonz´alez-L´opez J. et al., 2017b, A&A, 597, A41

Gullberg B. et al., 2015, MNRAS, 449, 2883

Harikane Y. et al., 2019, preprint (arXiv:1910.10927)

Hashimoto T. et al., 2018, Nature, 557, 392

Hashimoto T. et al., 2019, PASJ, 71, 71

Infante L. et al., 2015, ApJ, 815, 18

Inoue A. K. et al., 2016, Science, 352, 1559

Jones G. C., Willott C. J., Carilli C. L., Ferrara A., Wang R., Wagg J., 2017,

ApJ, 845, 175

Kanekar N., Wagg J., Chary R. R., Carilli C. L., 2013, ApJ, 771, L20

Kato Y. et al., 2018, PASJ, 70, L6

Katz H. et al., 2019, MNRAS, 487, 5902

Kawamata R., Oguri M., Ishigaki M., Shimasaku K., Ouchi M., 2016, ApJ,

819, 114

Knudsen K. K., Richard J., Kneib J.-P., Jauzac M., Cl´ement B., Drouart G.,

Egami E., Lindroos L., 2016, MNRAS, 462, L6

Kohandel M., Pallottini A., Ferrara A., Zanella A., Behrens C., Carniani S.,

Gallerani S., Vallini L., 2019, MNRAS, 487, 3007

Lagache G., Cousin M., Chatzikos M., 2018, A&A, 609, A130

Laporte N. et al., 2015, A&A, 575, A92

Laporte N. et al., 2016, ApJ, 820, 98

Laporte N. et al., 2017, ApJ, 837, L21

Laporte N. et al., 2019, MNRAS, 487, L81

Le´sniewska A., Michałowski M. J., 2019, A&A, 624, L13

Lotz J. M. et al., 2017, ApJ, 837, 97

Madau P., Dickinson M., 2014, ARA&A, 52, 415

Madden S. C., Poglitsch A., Geis N., Stacey G. J., Townes C. H., 1997, ApJ,

483, 200

Madden S. C. et al., 2013, PASP, 125, 600

Magdis G. E. et al., 2011, ApJ, 740, L15

Maiolino R., Mannucci F., 2019, A&AR, 27, 3

Malhotra S. et al., 1997, ApJ, 491, L27

Marrone D. P. et al., 2018, Nature, 553, 51

Matthee J. et al., 2017, ApJ, 851, 145

Mawatari K., Yamada T., Fazio G. G., Huang J.-S., Ashby M. L. N., 2016,

PASJ, 68, 46

Mawatari K. et al., 2020, ApJ, 889, 137

McLeod D. J., McLure R. J., Dunlop J. S., Robertson B. E., Ellis R. S.,

Targett T. A., 2015, MNRAS, 450, 3032

McMullin J. P., Waters B., Schiebel D., Young W., Golap K., 2007, in Shaw

R. A., Hill F., Bell D. J., eds, ASP Conf. Ser. Vol. 376, Astronomical Data

Analysis Software and Systems XVI. Astron. Soc. Pac., San Francisco,

p. 127

[C II] 158 μm and warm dust at z = 8.31

11 RIKEN

16 Faculty

of Science, Hokkaido University, N10 W8 Kita-ku, Sapporo 0600810 Japan

17 Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido 0908507, Japan

18 Department of Physics, Graduate School of Science, The University of

Tokyo, Tokyo 113-0033, Japan

19 Kavli Institute for the Physics and Mathematics of the Universe (WPI),

Todai Institutes for Advanced Study, The University of Tokyo, Kashiwa,

Chiba 277-8583, Japan

This paper has been typeset from a TEX/LATEX file prepared by the author.

MNRAS 493, 4294–4307 (2020)

Downloaded from https://academic.oup.com/mnras/article-abstract/493/3/4294/5781612 by Nagoya University user on 31 July 2020

Cluster for Pioneering Research, 2-1 Hirosawa, Wako-shi,

Saitama 351-0198, Japan

12 Institute of Astronomy, Graduate School of Science, The University of

Tokyo, 2-21-1, Osawa, Mitaka, Tokyo 181-0015, Japan

13 Observational Astrophysics, Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala, Sweden

14 Research Center for the Early Universe, Graduate School of Science, The

University of Tokyo, Tokyo 113-0033, Japan

15 Department of Astronomical Science, The Graduate University for Advanced Studies (SOKENDAI), 2-21-1, Osawa, Mitaka, Tokyo 181-8588,

Japan

4307

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る