リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Double Heterohelicenes Composed of Benzo[b]- and Dibenzo[b,i]phenoxazine: A Comprehensive Comparison of Their Electronic and Chiroptical Properties」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Double Heterohelicenes Composed of Benzo[b]- and Dibenzo[b,i]phenoxazine: A Comprehensive Comparison of Their Electronic and Chiroptical Properties

Sakamaki Daisuke Tanaka Shunya Tanaka Katsuki Takino Mayu Gon Masayuki Tanaka Kazuo Hirose Takashi Hirobe Daichi Yamamoto Hiroshi M. Fujiwara Hideki 大阪府立大学

2022.01.31

概要

Heterohelicenes are potential materials in molecular electronics and optics because of their inherent chirality and various electronic properties originating from the introduced heteroatoms. In this work, we comprehensively investigated two kinds of double NO- hetero[5]helicenes composed of 12H-benzo[b]phenoxazine (BPO) and 13H- dibenzo[b,i]phenoxazine (DBPO). These helicenes exhibit good electron donor property reflecting the electron-rich character of their monomers and were demonstrated to work as p-type semiconductors. The enantiomers of these helicenes show the largest class of dissymmetry factors for circularly polarized luminescence (CPL) (|gCPL| > 10−2) among the previously reported helicenes. Interestingly, the signs of CPL are opposite between BPO- and DBPO-double helicenes of the same helicity. The origin of the large gCPL values and the inversion of the CPL signs was addressed by analysis of the transition electronic dipole moments (TEDM) and transition magnetic dipole moments (TMDM) based on the TD-DFT calculations.

この論文で使われている画像

参考文献

(1) Albano, G.; Pescitelli, G.; Di Bari, L. Chiroptical Properties in Thin Films of π- Conjugated Systems. Chem. Rev. 2020, 120, 10145– 10243.

(2) Kiran, V.; Mathew, S. P.; Cohen, S. R.; Hernández Delgado, I.; Lacour, J.; Naaman, R. Helicenes - A New Class of Organic Spin Filter. Adv. Mater. 2016, 28, 1957– 1962.

(3) Shen, Y.; Chen, C.-F. Helicenes: Synthesis and Applications. Chem. Rev. 2012, 112, 1463−1535.

(4) Gingras, M. One Hundred Years of Helicene Chemistry. Part 1: Non-Stereoselective Syntheses of Carbohelicenes. Chem. Soc. Rev. 2013, 42, 968−1006.

(5) Gingras, M.; Felix, G.; Peresutti, R. One Hundred Years of Helicene Chemistry. Part 2: Stereoselective Syntheses and Chiral Separations of Carbohelicenes. Chem. Soc. Rev. 2013, 42, 1007−1050.

(6) Gingras, M. One Hundred Years of Helicene Chemistry. Part 3: Applications and Properties of Carbohelicenes. Chem. Soc. Rev. 2013, 42, 1051−1095.

(7) Li, C.; Yang, Y.; Miao, Q. Recent Progress in Chemistry of Multiple Helicenes. Chem.- Asian J. 2018, 13, 884−894.

(8) Tanaka, H.; Ikenosako, M.; Kato, Y.; Fujiki, M.; Inoue, Y.; Mori, T. Symmetry-Based Rational Design for Boosting Chiroptical Responses. Commun. Chem. 2018, 1, 38.

(9) Tanaka, H.; Inoue, Y.; Mori, T. Circularly Polarized Luminescence and Circular Dichroisms in Small Organic Molecules: Correlation between Excitation and Emission Dissymmetry Factors. ChemPhotoChem 2018, 2, 386-402.

(10) Mori, T. Chiroptical Properties of Symmetric Double, Triple, and Multiple Helicenes. Chem. Rev. 2021, 121, 2373–2412.

(11) Zhao, W.-L.; Li, M.; Lu, H.-Y.; Chen, C.-F. Advances in Helicene Derivatives with Circularly Polarized Luminescence. Chem. Commun. 2019, 55, 13793−13803.

(12) Shiraishi, K.; Rajca, A.; Pink, M.; Rajca, S. π-Conjugated Conjoined Double Helicene via a Sequence of Three Oxidative CC-and NN-Homocouplings. J. Am. Chem. Soc. 2005, 127, 9312−9313.

(13) Wang, Z.; Shi, J.; Wang, J.; Li, C.; Tian, X.; Cheng, Y.; Wang, H. Syntheses and Crystal Structures of Benzohexathia[7]helicene and Naphthalene Cored Double Helicene. Org. Lett. 2010, 12, 456−459.

(14) Hashimoto, S.; Nakatsuka, S.; Nakamura, M.; Hatakeyama, T. Construction of a Highly Distorted Benzene Ring in a Double Helicene. Angew. Chem., Int. Ed. 2014, 53, 14074−14076.

(15) Nakamura, K.; Furumi, S.; Takeuchi, M.; Shibuya, T.; Tanaka, K. Enantioselective Synthesis and Enhanced Circularly Polarized Luminescence of S-Shaped Double Azahelicenes. J. Am. Chem. Soc. 2014, 136, 5555−5558.

(16) Sakamaki, D.; Kumano, D.; Yashima, E.; Seki, S. Angew. Chem. Int. Ed. 2015, 54, 5404−5407.

(17) Sakamaki, D.; Kumano, D.; Yashima, E.; Seki, S. A Double Hetero[4]helicene Composed of Two Phenothiazines: Synthesis, Structural Properties, and Cationic States. Chem. Commun. 2015, 51, 17237−17240.

(18) Katayama, T.; Nakatsuka, S.; Hirai, H.; Yasuda, N.; Kumar, J.; Kawai, T.; Hatakeyama, T. Two-Step Synthesis of Boron-Fused Double Helicenes. J. Am. Chem. Soc. 2016, 138, 5210−5213.

(19) Wang, X.-Y.; Wang, X.-C.; Narita, A.; Wagner, M.; Cao, X.-Y.; Feng, X.; Müllen, K. Synthesis, Structure, and Chiroptical Properties of a Double [7]Heterohelicene. J. Am. Chem. Soc. 2016, 138, 12783−12786.

(20) Richter, M.; Hahn, S.; Dmitrieva, E.; Rominger, F.; Popov, A.; Bunz, U. H. F.; Feng, X.; Berger, R. Helical Ullazine-Quinoxaline-Based Polycyclic Aromatic Hydrocarbons. Chem. - Eur. J. 2019, 25, 1345−1352.

(21) Kinoshita, S.; Yamano, R.; Shibata, Y.; Tanaka, Y.; Hanada, K.; Matsumoto, T.; Miyamoto, K.; Muranaka, A.; Uchiyama, M.; Tanaka, K. Rhodium-Catalyzed Highly Diastereo- and Enantioselective Synthesis of a Configurationally Stable S-Shaped Double Helicene-Like Molecule. Angew. Chem., Int. Ed. 2020, 59, 11020−11027.

(22) Kawashima, T.; Matsumoto, Y.; Sato, T.; Yamada, Y. M. A.; Kono, C.; Tsurusaki, A.; Kamikawa, K. Synthesis, Structure, and Complexation of an S-Shaped Double Azahelicene with Inner-Edge Nitrogen Atoms. Chem. - Eur. J. 2020, 26, 13170−13176.

(23) Zhang, L.; Song, I., Ahn, J.; Han, M.; Linares, M.; Surin, M.; Zhang, H.-J.; Oh, J. H.; Lin, J. π-Extended perylene diimide double-heterohelicenes as ambipolar organic semiconductors for broadband circularly polarized light detection. Nat Commun. 2021, 12, 142.

(24) Nogami, N.; Nagashima, Y.; Miyamoto, K.; Muranaka, A.; Uchiyama, M.; Tanaka, K. Asymmetric synthesis, structures, and chiroptical properties of helical cycloparaphenylenes. Chem. Sci. 2021, 12, 7858–7865.

(25) Bunz, U. H. F. The Larger N-Heteroacenes. Pure Appl. Chem. 2010, 82, 953–968.

(26) Bunz, U. H. F.; Freudenberg, J. N‑Heteroacenes and N-Heteroarenes as N‑Nanocarbon Segments. Acc. Chem. Res. 2019, 52, 1575–1587.

(27) Gangadhar, P. S.; Reddy, G.; Prasanntkumar, S.; Giribabu. L. Phenothiazine Functional Materials for Organic Optoelectronic Applications. Phys. Chem. Chem. Phys. 2021, 23, 14969−14996.

(28) Tanaka, K.; Sakamaki, D.; Fujiwara, H. Synthesis and Electronic Properties of Directly Linked Dihydrodiazatetracene Dimers. Chem. - Eur. J. 2021, 27, 4430−4438.

(29) VanAllan, J. A.; Reynolds, G. A.; Maier, D. P. The Reaction of 12H- Benzo[a]phenothiazine and 12H-Benzo[b]phenoxazine with Certain Heterocyclic Azides J. Org. Chem. 1969, 34, 1691−1694.

(30) Inoue, Y.; Sakamaki, D.; Tsutsui, Y.; Gon, M.; Chujo, Y.; Seki, S. Hash-Mark-Shaped Azaacene Tetramers with Axial Chirality. J. Am. Chem. Soc. 2018, 140, 7152−7158.

(31) Wan, A.; Hwang, J.; Amy, F.; Kahn, A. Impact of electrode contamination on the α- NPD/Au hole injection barrier. Org. Electron. 2005, 81, 2887.

(32) Fujikawa, T.; Mitoma, N.; Wakamiya, A.; Saeki, A.; Segawa, Y.; Itami, K. Synthesis, properties, and crystal structures of pi-extended double [6]helicenes: contorted multi- dimensional stacking lattice. Org. Biomol. Chem. 2017, 15, 4697–4703.

(33) Haketa, Y.; Bando, Y.;Takaishi, K.; Uchiyama, M.; Muranaka, A.; Naito, M.; Shibaguchi, H.; Kawai, T.; Maeda, H. Angew. Chem., Int. Ed. 2012, 51, 7967−797.

(34) Morisaki, Y.; Gon, M.; Sasamori, T.; Tokitoh, N.; Chujo, Y. Planar Chiral Tetrasubstituted [2.2]Paracyclophane: Optical Resolution and Functionalization. J. Am. Chem. Soc. 2014, 136, 3350–3353.

(35) Y.; Gon, M.; Morisaki, Y.; Chujo, Y. Optically Active Cyclic Compounds Based on Planar Chiral [2.2]Paracyclophane: Extension of the Conjugated Systems and Chiroptical Properties. J. Mater. Chem. C 2015, 3, 521–529.

(36) Morcillo, S. P.; Miguel, D.; Álvarez de Cienfuegos, L.; Justicia, J.; Abbate, S.; Castiglioni, E.; Bour, C.; Ribagorda, M.; Cárdenas, D. J.; Paredes, J. M.; Crovetto, L.; Choquesillo-Lazarte, D.; Mota, A. J.; Carreño, M. C.; Longhi, G.; Cuerva, J. M. Stapled Helical o-OPE Foldamers as New Circularly Polarized Luminescence Emitters based on Carbophilic Interactions with Ag(I)-sensitivity. Chem. Sci. 2016, 7, 5663– 5670.

(37) Sato, S.; Yoshii, A.; Takahashi, S.; Furumi, S.; Takeuchi, M.; Isobe, H. Chiral Intertwined Spirals and Magnetic Transition Dipole Moments Dictated by Cylinder Helicity. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 13097−13101.

(38) Kubo, H.; Shimizu, D.; Hirose, T.; Matsuda, K. Circularly Polarized Luminescence Designed from Molecular Orbitals: A Figure-Eight-Shaped [5]Helicene Dimer with D2 Symmetry. Org. Lett. 2020, 22, 9276−9281.

(39) Kubo, H.; Hirose, T.; Nakashima, T.; Kawai, T.; Hasegawa, J.; Matsuda, K. Circularly Polarized Luminescence Designed from Molecular Orbitals: A Figure-Eight- Shaped [5]Helicene Dimer with D2 Symmetry. J. Phys. Chem. Lett. 2021, 12, 686−695.

(40) Schellman, J. A. Circular Dichroism and Optical Rotation. Chem. Rev. 1975, 75, 323−331.

(41) Sprafke, J. K.; Kondratuk, D. V.; Wykes, M.; Thompson, A.L.; Hoffmann, M.; Drevinskas, R.; Chen, W.-H.; Yong, C. K.; Kärnbratt, J.; Bullock, J. E.; Malfois, M.; Wasielewski, M. R.; Albinsson, B.; Herz, L. M.; Zigmantas, D.; Beljonne, D.; Anderson, H. L. Belt-Shaped π-Systems: Relating Geometry to Electronic Structure in a Six- Porphyrin Nanoring. J. Am. Chem. Soc. 2011, 133,17262−17273.

(42) Camacho, C.; Niehaus, T. A.; Itami, K.; Irle, S. Origin of the Size-Dependent Fluorescence Blueshift in [n]Cycloparaphenylenes. Chem. Sci. 2013, 4, 187−195.

(43) Wada, Y.; Shizu, K.; Kaji, H. Molecular Vibration Accelerates Charge Transfer Emission in a Highly Twisted Blue Thermally Activated Delayed Fluorescence Material. J. Phys. Chem. A 2021, 125, 21, 4534–4539.

(44) During the preparation of this manuscript, Isobe et al. reported that the dissymmetry factor is sensitive to subtle structural fluctuations in a cylinder-shaped chiral π-system: Fukunaga, T. M.; Sawabe, C.; Matsuno, T.; Takeya, J.; Okamoto, T.; Isobe, H. Manipulations of Chiroptical Properties in Belt-Persistent Cycloarylenes via Desymmetrization with Heteroatom Doping, Angew. Chem., Int. Ed. doi.org/10.1002/anie.202106992.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る