リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Low resistance at LiNi1/3Mn1/3Co1/3O2 and Li3PO4 interfaces」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Low resistance at LiNi1/3Mn1/3Co1/3O2 and Li3PO4 interfaces

Kazunori Nishio Naoto Nakamura Koji Horiba Miho Kitamura Hiroshi Kumigashira Ryota Shimizu Taro Hitosugi 東北大学 DOI:10.1063/1.5133879

2020.02.03

概要

We report the low resistance observed at the interface of LiNi1/3Mn1/3Co1/3O2 (NMC) and Li3PO4. First, we show the deposition of high-quality single-phase NMC (001) epitaxial thin films on Al2O3 (0001) substrates using pulsed laser deposition. Controlling the oxi- dation states of the three transition metals in NMC films is crucial for stable battery operation. However, in general, it is very difficult to simultaneously control the oxidation states of three elements in vacuum deposition processes. Tuning the oxygen partial pressure and temperature during deposition led to the growth of NMC thin films with ideal oxidation states (Ni2+, Mn4+, and Co3+), as confirmed using bulk-sensitive x-ray excited optical luminescence. Next, using the NMC epitaxial thin films, we prepared solid-state batteries that demonstrated stable operation and very low resistance at the solid electrolyte/electrode interfaces. These results provide insight into the fabrication of multi-transition-metal electrode thin film materials, which are important for investigating the mechanisms of lithium bat- tery operation. Furthermore, the low interface resistance indicates that Li3PO4 and oxide electrode materials form very stable low- resistance interfaces.

この論文で使われている画像

参考文献

1M. Armand and J.-M. Tarascon, Nature 451, 652–657 (2008).

2N. Yabuuchi and T. Ohzuku, J. Power Sources 119-121, 171–174 (2003).

3M. Hirayama, N. Sonoyama, T. Abe, M. Minoura, M. Ito, D. Mori, A. Yamada, R. Kanno, T. Terashima, M. Takano, K. Tamura, and J. Mizuki, J. Power Sources 168, 493–500 (2007).

4M. Hirayama, H. Ido, K. S. Kim, W. Cho, K. Tamura, J. Mizuki, and R. Kanno, J. Am. Chem. Soc. 132, 15268–15276 (2010).

5M. Haruta, S. Shiraki, T. Suzuki, A. Kumatani, T. Ohsawa, Y. Takagi, R. Shimizu, and T. Hitosugi, Nano Lett. 15, 1498–1502 (2015).

6D. Takamatsu, Y. Koyama, Y. Orikasa, S. Mori, T. Nakatsutsumi, T. Hirano, H. Tanida, H. Arai, Y. Uchimoto, and Z. Ogumi, Angew. Chem., Int. Ed 51,11597–11601 (2012).

7D. Takamatsu, T. Nakatsutsumi, S. Mori, Y. Orikasa, M. Mogi, H. Yamashige, K. Sato, T. Fujimoto, Y. Takanashi, H. Murayama, M. Oishi, H. Tanida, T. Uruga, Y. Uchimoto, and Z. Ogumi, J. Phys. Chem. Lett. 2, 2511–2514 (2011).

8M. Abe, K. Suzuki, H. Minamishima, K. Kim, S. Taminato, M. Hirayama, and R. Kanno, J. Jpn. Soc. Powder Powder Metallurgy 62, 531–537 (2015).

9M. Hirayama, M. Abe, S. Taminato, Y. Araki, K. Suzuki, and R. Kanno, RSC Adv. 6, 78963 (2016).

10M. Abe, H. Iba, K. Suzuki, H. Minamitani, M. Hirayama, K. Tamura, J. Mizuki, T. Saito, and Y. Ikuhara, J. Power Sources 345, 108–119 (2017).

11T. Ohnishi, H. Koinuma, and M. Lippmaa, Appl. Surf. Sci. 252, 2466–2471 (2006).

12M. G. Kim, H. J. Shin, J.-H. Kim, S.-H. Park, and Y.-K. Sun, J. Electrochem. Soc. 152, A1320–A1328 (2005).

13M. Haruta, S. Shiraki, T. Ohsawa, T. Suzuki, A. Kumatani, T. Takagi, R. Shimizu, and T. Hitosugi, Solid State Ionics 285, 118–121 (2016).

14H. Kawasoko, S. Shiraki, T. Suzuki, R. Shimizu, and T. Hitosugi, ACS Appl. Mater. Interfaces 10, 27498–27502 (2018).

15Y. W. Tsai, B. J. Hwang, G. Ceder, H. S. Sheu, D. G. Liu, and J. F. Lee, Chem. Mater. 17, 3191–3199 (2005).

16K. M. Shaju, G. V. S. Rao, and B. V. Chowdari, Electrochim. Acta 48, 145–151 (2002).

17L. Zhang, X. Wang, T. Muta, D. Li, H. Noguchi, M. Yoshio, R. Ma, K. Takada, and T. Sasaki, J. Power Sources 162, 629–635 (2006).

18X. Li, Y. J. Wei, H. Ehrenberg, F. Du, C. Z. Wang, and G. Chen, Solid State Ionics 178, 1969–1974 (2008).

19K. Nishio, T. Ohnishi, M. Osada, N. Ohta, K. Watanabe, and K. Takada, Solid State Ionics 285, 91–95 (2016).

20R. J. Gummow, M. M. Thackeray, W. I. F. David, and S. Hull, Mater. Res. Bull 27, 327–337 (1992).

21E. Rossen, J. N. Reimers, and J. R. Dahn, Solid State Ionics 62, 53–60 (1993).

22K. Sakamoto, M. Hirayama, H. Konishi, N. Sonoyama, N. Dupr´e, D. Guyomard, K. Tamura, J. Mizuki, and R. Kanno, Phys. Chem. Chem. Phys 12, 3815–3823 (2010).

23N. Machida, J. Kashiwagi, M. Naito, and T. Shigematsu, Solid State Ionics 225, 354–358 (2012).

24S.-K. Hu, G.-H. Cheng, M.-Y. Cheng, B.-J. Hwang, and R. Santhanam, J. Power Sources 188, 564–569 (2009).

25R. E. Ruther, A. F. Callender, H. Zhou, S. K. Martha, and J. Nanda, J. Electrochem. Soc. 162, A98–A102 (2015).

26M. Inaba, Y. Todzuka, H. Yoshida, Y. Grincourt, A. Tasaka, Y. Tomida, and Z. Ogumi, Chem. Lett. 24, 889–890 (1995).

27N. K. Karan, J. J. Saavedra-Arias, D. K. Pradhan, R. Melgarejo, A. Kumar, R. Thomas, and R. S. Katiyar, Electrochem. Solid-State Lett. 11, A135–A139 (2008).

28N. Kuwata, N. Iwagami, Y. Tanji, Y. Matsuda, and J. Kawamura, J. Electrochem. Soc. 157, A521–A527 (2010).

29S. Shiraki, T. Shirasawa, T. Suzuki, H. Kawasoko, R. Shimizu, and T. Hitosugi, ACS Appl. Matter. Interfaces 10, 41732–41737 (2018).

30D. Li, Y. Kato, K. Kobayakawa, H. Noguchi, and Y. Sato, J. Power Sources 160, 1342–1348 (2006).

31K. Okada, N. Machida, M. Naito, T. Shigematsu, S. Ito, S. Fujiki, M. Nakano, and Y. Aihara, Solid State Ionics 255, 120–127 (2014).

参考文献をもっと見る