リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Athermal Solid Phase Reaction in Pt/SiOx Thin Films Induced by Electron Irradiation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Athermal Solid Phase Reaction in Pt/SiOx Thin Films Induced by Electron Irradiation

Sato, Kazuhisa 大阪大学

2021.08.24

概要

Microelectronics based on Si requires metal silicide contacts. The ability to form platinum silicide (Pt₂Si) by electronic excitation instead of thermal processes would benefit the field. We studied the effects of electron irradiation on Pt₂Si formation in composite films-composed of Pt and amorphous silicon oxides (a-SiOx)-by transmission electron microscopy and electron diffraction. Pt₂Si formed in Pt/a-SiOx bilayer and a-SiOx/Pt/a-SiOx sandwiched films by 75 keV electron irradiation, at 298 and 90 K. The reaction is attributable to dissociation of SiOx triggered by electronic excitation. In a-SiOx/Pt/a-SiOx sandwiched films, reflections of pure Pt were not present after irradiation, i.e., Pt was completely consumed in the reaction to form Pt₂Si at 298 K. However, in Pt/a-SiOx bilayer films, unreacted Pt remained under the same irradiation conditions. Thus, it can be said that the extent of the interfacial area is the predominant factor in Pt₂Si formation. The morphology of Pt islands extensively changed during Pt₂Si formation even at 90 K. Coalescence and growth of metallic particles (Pt and Pt-Si) are not due to thermal effects during electron irradiation but to athermal processes accompanied by silicide formation. To maintain the reaction interface between metallic particles and the dissociation product (i.e., Si atoms) by electronic excitation, a considerable concomitant morphology change occurs. Elemental analysis indicates that the decrease in Si concentration near Pt is faster than the decrease in O concentration, suggesting formation of a Si depletion zone in the amorphous silicon oxide matrix associated with formation of Pt₂Si.

この論文で使われている画像

参考文献

(1) Murarka, S. P. Silicide thin films and their applications in microelectronics. Intermetallics 1995, 3, 173−186.

(2) Burkov, A. T. Silicide thermoelectrics: Materials for energy harvesting. Phys. Status Solidi A 2018, 215, 1800105.

(3) Hiraki, A. Low temperature reactions at Si/metal interfaces; What is going on at the interfaces? Surf. Sci. Rep. 1983, 3, 357−412.

(4) Yasuda, H.; Tanaka, A.; Matsumoto, K.; Nitta, N.; Mori, H. Formation of porous GaSb compound nanoparticles by electronicexcitation-induced vacancy clustering. Phys. Rev. Lett. 2008, 100, 105506.

(5) Lee, J.-G.; Nagase, T.; Yasuda, H.; Mori, H. Synthesis of metal silicide at metal/silicon oxide interface by electronic excitation. J. Appl. Phys. 2015, 117, 194307.

(6) Sato, K.; Yasuda, H.; Ichikawa, S.; Imamura, M.; Takahashi, K.; Hata, S.; Matsumura, S.; Anada, S.; Lee, J.-G.; Mori, H. Synthesis of platinum silicide at platinum/silicon oxide interface by photon irradiation. Acta Mater. 2018, 154, 284−294.

(7) Sato, K.; Furukawa, D.; Yasuda, H.; Lee, J.-G.; Mori, H. Structure and morphology changes of a-SiOx/Pt/a-SiOx composite films induced by Pt2Si formation via electronic excitation. Proceedings of the 10th Pacific Rim International Conference on Advanced Materials and Processing; 2019, 738−743.

(8) Yasuda, H.; Sato, K.; Ichikawa, S.; Imamura, M.; Takahashi, K.; Mori, H. Promotion in solid phase reaction of Pt/SiOx bilayer film by electron-orbital-selective-excitation. RSC Adv. 2021, 11, 894−898.

(9) Corbett, J. W.; Electron radiation damage in semiconductors and metals; Academic Press: NY, 1966.

(10) Abelson, J. R.; Kim, K. B.; Mercer, D. E.; Helms, C. R.; Sinclair, R.; Sigmon, T. W. Disordered intermixing at the platinum: silicon interface demonstrated by high-resolution cross-sectional transmission electron microscopy, Auger electron spectroscopy, and MeV ion channeling. J. Appl. Phys. 1988, 63, 689−692.

(11) Conforto, E.; Schmid, P. E. Pt-Si reaction through interfacial native silicon oxide layers. Philos. Mag. A 2001, 81, 61−82.

(12) Pretorius, R. Studies of the growth and oxidation of metalsilicides using reactive 31Si as tracer. J. Electrochem. Soc. 1981, 128, 107−112.

(13) Poate, J. M.; Tisone, T. C. Kinetics and mechanism of platinum silicide formation on silicon. Appl. Phys. Lett. 1974, 24, 391−393.

(14) Booth, T. J.; Pizzocchero, F.; Andersen, H.; Hansen, T. W.; Wagner, J. B.; Jinschek, J. R.; Dunin-Borkowski, R. E.; Hansen, O.; BØggild, P. Discrete dynamics of nanoparticle channelling in suspended graphene. Nano Lett. 2011, 11, 2689−2692.

(15) Cliff, G.; Lorimer, G. W. The quantitative analysis of thin specimens. J. Microsc. 1975, 103, 203−207.

(16) Egerton, R. F. Electron energy-loss spectroscopy in the electron microscope; 3rd ed.; Springer: NY, 2011.

(17) Chen, G. S.; Boothroyd, C. B.; Humphreys, C. J. Electronbeam-induced damage in amorphous SiO2 and the direct fabrication of silicon nanostructures. Phil. Mag. A 1998, 78, 491−506.

(18) Hirata, A.; Kohara, S.; Asada, T.; Arao, M.; Yogi, C.; Imai, H.; Tan, Y.; Fujita, T.; Chen, M. Atomic-scale disproportionation in amorphous silicon monoxide. Nat. Commun. 2016, 7, 11591.

参考文献をもっと見る