リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Eco-physiological study on reproduction of the range-extengded sea urchin Heliocidaris crassispina」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Eco-physiological study on reproduction of the range-extengded sea urchin Heliocidaris crassispina

Feng Wengping 東北大学

2020.03.25

概要

Background
The recent report of IPCC (Intergovernmental Panel on Climate Change) indicated that human activity will cause ocean warming to 1.5°C by 2030–2052 (IPCC, 2019). Despite the ocean have absorbed > 80% of the heat affecting the global climate system, increase in ocean temperature was three times slower than that in air temperatures over land (Sunday et al., 2012). And the marine organisms were more sensitive to increase in temperature than those of terrestrial species (Pörtner and Knust, 2007; Pörtner et al., 2014). Marine organisms respond to ocean warming in several ways. First, they can move (poleward extend) to new areas that become available within their thermal niche (Parmesan and Yohe, 2003; Ling et al., 2008; Poloczanska et al., 2013). Range extension may arise as a result of changes in the ecosystem structure and function of the newly extended habitat (Davis et al., 1998; Walther et al., 2002; Edwards and Richardson, 2004; Doney et al., 2012, Dawson et al., 2011) and give rise to potential threats to fisheries (Johnson et al., 2005). Second, they can adapt to climate change either via phenotypic plasticity or evolutionary changes. Phenotypic plasticity is often considered as the first response to environmental change (Munday et al., 2013; Gienapp et al., 2008), including morphological, physiological and behavioral plasticities. Evolutionary changes of marine organisms are extension of their in situ thermal niche throughout multiple generations caused by changing environment (Visser, 2008; Williams et al., 2008). Third, marine organisms can experience range contractions where a modified climate exceeds their thermal niche, followed by death.

Sea urchin is ectothermic marine animal, of which distribution and reproduction (Agatsuma et al., 2007; Ling et al., 2008; Pecorino et al., 2013), physiology (Wolfe et al., 2013; Zhao et al., 2018) and behavior (Brothers and Mcclintock, 2015) changed along with the ocean warming. Agatsuma et al. (2007) reported that the range of Hemicentrotus pulcherrimus was extended from the southern to northern coast of Hokkaido in the Sea of Japan after massive recruitment in 1989, 1990 and 1991 under high water temperatures during the larval period. The populations in the new habitats showed a fast growth rate and a defined gametogenic cycle with high gonad production in 1992 and 1993 (Agatsuma and Nakata, 2004). The range of Centrostephanus rodgersii was extended to Tasmania (Johnson et al., 2005) in the last 50–60 years and subsequently to New Zealand (Pecorino et al., 2013), due to the transport of surviving larvae (Andrew et al., 2001; Johnson et al., 2005) driven by the poleward advance of the East Australian Current (Ridgway et al., 2007). In its new habitats, C. rodgersii displays a strong seasonal cycle of gonad production and produces viable gametes (Ling et al., 2008). The gametes of the female and male can be produced synchronously (Pecorino et al., 2013). However, little is known about how range-extended species adjust to their new abiotic and biotic environments physiologically and ecologically by sex.

Heliocidaris crassispina has been intensively studied as Anthocidaris crassispina, which is found in intertidal and subtidal zones in the Pacific coastal regions around Ibaraki, in the southern Sea of Japan around Akita, and southeastern China (Shigei, 1995). It is a common herbivore in the middle part of the Sea of Japan (Hayashi et al., 2000). High densities (0.8–21.6 ind./m2) of H. crassispina were found at a depth of 7 m in Wakasa Bay in Kyoto, Japan, where is the central distribution of H. crassispina in Japan (Tsuji et al., 1994). Mesocentrotus nudus is distributed in the Pacific Ocean in Rausu, from Sagami Bay to Erimo Cape, Hokkaido, and in the Sea of Japan from Omi Island, Yamaguchi, to Soya Cape, northern Hokkaido in Japan (Kawamura, 1993; Shigei, 1995).

Before 2014, H. crassispina was rarely distributed in southwestern Oga Peninsula in Japan (Nakabayashi, pers. commun.). The range extension in Toga Bay, Oga Peninsula, Akita Prefecture in northeastern Honshu, Japan was first observed in 2014 (Nakabayashi, 2016). Thereafter, H. crassispina distributed all around Akita and also in Aomori Prefectures in the Sea of Japan and along the Tsugaru Strait in 2015 (Nakabayashi et al., 2016; Kirihara and Fujikawa, 2018). On the other hand, M. nudus, which was predominant until a couple of years ago, disappeared in shallow waters in Toga Bay along the Oga Peninsula (Mizuno and Eguchi, 2015; Ito, 2014), possibly due to their movement to the deeper waters or death at high water temperatures in summer (Tsuji et al., 1994) before 2014.

Research history
Marine organisms primarily respond to ocean warming by shifting their reproductive phenology and showing a prolonged period of reproduction (Parmesan and Yohe, 2003; Edwards and Richardson, 2004; Poloczanska et al., 2016). Such warming-induced shifts in reproduction might impact the population dynamics and demography of organisms (Edwards and Richardson, 2004; Poloczanska et al., 2016). The reproductive biology of H. crassispina has been studied since the 1960s (Kobayashi, 1969; Mori et al., 1980; Yoo et al., 1982; Sakairi et al., 1989; Yamasaki and Kiyomoto, 1993; Horii, 1997; Yatsuya and Nakahara, 2004; Urriago et al., 2016). The spawning of H. crassispina occurs synchronously between the sexes from August to September in Wakasa Bay (Yatsuya and Nakahara, 2004) and from July to August on Hirado Island, Nagasaki Prefecture, Japan (Yamasaki and Kiyomoto, 1993). In Japan, H. crassispina is harvested around Kyoto in the Sea of Japan and around Wakasa Bay in the Pacific Ocean, which is the center of its distribution (Tsuji et al., 1989). The evaluation of the reproductive strategies (Poorbagher et al., 2010, Kapsenberg et al., 2017) and population structure of range-extended sea urchins (Ling et al., 2009) would enable us to explain their adaptation to new environments at the margin of their range. In addition, comparison with sea urchins of the same species in the central range would contribute to a better understanding. However, no information on the reproduction and population structure of H. crassispina in newly extended habitat has been reported.

Sea urchins are ectothermic animals whose physiology (Wolfe et al., 2013; Zhao et al., 2018) and behavior (Brothers and Mcclintock, 2015) are negatively impacted by ocean warming. Physiological thermal tolerance limits of marine organisms play an important role in reflecting the distribution range shifts (Pörtner, 2001; Pörtner and Knust, 2007) and the organism’s adaptation in response to the warming environment (Peck, 2005; Barnes and Peck, 2008). Many studies reveal that metabolic processes of sea urchins are governed by water temperature (McBride et al., 1997; Spirlet et al., 1998; Brockington and Clarke, 2001; Hochachka and Somero, 2002; Shipigel et al., 2004). Understanding the temperature impacts on H. crassispina and M. nudus physiologically and behaviorally are fundamental to figure out the reason of replacement of M. nudus by H. crassispina in Oga Peninsula and to assess their potential distribution (Ricciardi et al., 2000; Somero, 2005; Kearney and Porter, 2009).

Compounds rich in carbon (C) were primarily used to meet the demands of metabolism in invertebrates (Elendt, 1989), and nitrogen (N) also plays an important role in metabolism (Mayor et al., 2011; Zhu et al., 2016), growth and reproduction of invertebrate (Roman, 1983; Elendt, 1989). Most researches on the seasonal changes in protein (nitrogen) and carbohydrates (carbon) of gonad and gut in sea urchin from the point of view of nutrient level, which were correlated with reproduction and food availability (Moss and Lawrence et al., 1972; Fernandez, 1998; Montero-Torreiro and Garcia-Martinez, 2003; Rocha et al., 2019). However, little research treated the changes in C and N contents of gonad and gut as an indicator, to reflect the metabolism or adaptation of sea urchin under changing environment (e.g. temperature). Additionally, Giese et al. (1959) suggested that the seasonal variability of constituents of the gonad is a key factor in asynchronous spawning between the sexes in sea urchin.

Food consumption (feeding rate) as a phenotypic trait indicates the physiological and health conditions of marine organisms (Huntingford et al., 2010). It increased along with temperature increase (McBride et al., 1997; Douke and Hamanaka, 2001; Siikavuopio et al., 2006). A number of studies have shown that feeding regulation allow marine organisms to express an advantageous adaptation for performing successfully under changing environment (e.g. ocean warming or acidification) (Saba et al., 2012; Burnell et al., 2013; Nagelkerken and Munday, 2016), and that to have a greater ecological niche width (Sobero´n and Peterson, 2005; Helaouet and Beaugrand, 2009). If the feeding of sea urchin is less sensitive to temperature, showing a large optimal temperature range, it would reflect the greater niche width and adaptability. Machiguchi et al. (1994) reported that food consumption of M. nudus decreased in winter at water temperatures of < 5°C. However, little is known on feeding of H. crassispina associated with changing temperature. In addition, comparison of the optimal temperature ranges of feeding rate between H. crassispina and M. nudus is essential to provide a clue on the replacement of the M. nudus by H. crassispina.

Righting response and Aristotle's lantern reflex reflect the phenotypic adjustments in behavior of sea urchin under the changing environment. Righting response coordinate sea urchins by the neuromuscular system, affecting the ability of the organism to survive from predators and strong surge (Kleitman, 1941; Percy, 1973). The Aristotle's lantern reflex is the ability of sea urchin to hold and to grind food (De Ridder and Lawrence, 1982). The elevated temperature suppresses the righting responses (Farmanfarmaian and Giese, 1963; Brothers and McClintock, 2015; Sherman, 2015) and lantern reflexes (Brothers and McClintock, 2015) of sea urchin. However, little study on the negative impact of low temperature on sea urchin behavior have been undertaken except for Farmanfarmaian and Giese (1963).

Recruitment of marine invertebrates is impacted by temperature (Pechenik, 1987; Hart and Scheibling, 1988; O’Connor et al., 2007). The hypothesis that thermal tolerance of planktonic propagules limits the geographical distribution of marine invertebrates is supported by the correlation between spawning temperature and successfully larval development (Andronikov, 1975; Fujisawa, 1990; Reitzel et al., 2005). Fujisawa and Shigei (1990) reported that the major spawning of H. crassispina occurred in summer at high water temperature of 17–29°C, and the increased temperature could increase the growth and development rate of embryos within the suitable temperature range (Fujisawa and Shigei,1990; Plamer, 1994; Ling et al., 2008; Pecorino et al., 2013). Understanding the temperature limits of H. crassispina from fertilization to larval development and juvenile are essential to figure out the adaptation and recruitment of H. crassispina in newly extended habitat.

Purpose
My study aims to figure out (1) the driver of the range extension, (2) temperature causing replacement of M. nudus by H. crassispina and (3) reproductive adaptation of the new extender. It is the first time to study on a new sea urchin population extended last decade.

In chapter II, the gonad development and population structure of H. crassispina between northern extended and central ranges were compared. In chapter III, the reproductive cycle and nutrient accumulation of H. crassispina in newly extended habitat were analyzed by annual changes in gonad development and C/N ratio of gonad, gut and gut content to confirm the delayed spermatogenesis and figure out the specific cause. In chapter IV, I explored the effect of temperature on early life stage of H. crassispina: the feeding and behavior of juvenile (Section 1), fertilization to larvae and their temperature limits (Section 2). In chapter V, I concluded the reproductive adaptation of H. crassispina in newly-extended habitat, and the range extension of H. crassispina in future.

この論文で使われている画像

参考文献

Agatsuma, Y., Hayashi, T., Uchida, M., 1989. Seasonal larval occurrence and spawning season of two sea urchins, Strongylocentrotus intermedius and S. nudus, in southern Hokkaido. Sci. Rep. Hokkaido Fish. Exp. Stn. 33, 9–20 (in Japanese with English abstract).

Agatsuma, Y., Nakata, A., 2004. Age determination, reproduction and growth of the sea urchin Hemicentrotus pulcherrimus in Oshoro Bay, Hokkaido, Japan. J. Mar. Biol. Assoc. UK. 84, 401–405.

Agatsuma, Y., Sato, M., Taniguchi, K., 2005. Factors causing brown-coloured gonads of the sea urchin Strongylocentrotus nudus in northern Honshu, Japan. Aquaculture. 249, 449–458.

Agatsuma, Y., Hoshikawa, H., 2007. Northward extension of geographic range of the sea urchin Hemicentrotus pulcherrimus in Hokkaido, Japan. J. Shellfish. Res. 26, 629–635.

Agatsuma, Y., 2013. Hemicentrotus pulcherrimus, Pseudocentrotus depressus, and Heliocidaris crassispina. In: Lawrence, J.M. (ed.), Sea urchins: biology and ecology. Academic Press, Amsterdam, p. 461–473.

Allee, W.C., Emerson, A.E., Park, O., Schmidt, K.P., 1949. Principles of animal ecology, W.B. Saunders. Philadelphia. pp. xii+837.

Allison, E.H., Adger, W.N., Badjeck, M.C., 2005. Effects of climate change on the sustainability of capture and enhancement fisheries important to the poor: analysis of the vulnerability and adaptability of fisherfolk living in poverty. Fisheries Management Science Programme, DFID, UK. pp. 174.

Andrew, N.L., Byrne, M., 2001. The ecology of Centrostephanus rodgersii. Edible sea urchins: biology and ecology (ed. Lawrence JM), Amsterdam: Elsevier Science. pp.149–160.

Andronikov, V.B., 1975. Heat resistance of gametes of marine invertebrates in relation to temperature conditions under which the species exist. Mar. Biol. 30, 1–11.

Azad, A.K., Pearce C.M., McKinley R.S., 2011. Effects of diet and temperature on ingestion, absorption, assimilation, gonad yield, and gonad quality of the purple sea urchin (Strongylocentrotus purpuratus). Aquaculture. 317, 187–196.

Balch, T., Scheibling, R.E., 2001. Larval supply, settlement and recruitment in echinoderms. (ed. Lawrence JM), vol. 6. Echinoderm Studies, A.A. Balkema Publishers, Lisse. pp. 1–83.

Barnes, D.K.A., Peck, L.S., 2008. Is Antarctic shelf biodiversity vulnerable to climate change? Global Change Biol. 37, 149–163.

Basuyaux, O., Mathieu M., 1999. Inorganic nitrogen and its effect on growth of the abalone Haliotis tuberculata Linnaeus and the sea urchin Paracentrotus lividus Lamarck. Aquaculture, 174(1–2), 95–107.

Borisovets, E.E., Zadorozhny, P.A., Kalinina, M.V., Lepskaya, N.V., Yakush, E.V., 2002. Changes of major carotenoids in gonads of sea urchins (Strongylocentrotus intermedius and S. nudus) at maturation. Comp. Biochem. Phys. B. 132, 779–790.

Brockington, S., Clarke, A., 2001. The relative influence of temperature and food on the metabolism of a marine invertebrate. J. Exp. Mar. Biol. Ecol. 258, 87–99 Bronstein, O., Kroh, A., Loya, Y., 2016. Reproduction of the long-spined sea urchin Diadema setosum in the Gulf of Aqaba-implications for the use of gonad indexes. Sci. Rep. 6, 29569.

Brothers, C.J., McClintock, J.B., 2015. The effects of climate-induced elevated seawater temperature on the covering behavior, righting response, and Aristotle's lantern reflex of the sea urchin Lytechinus variegatus. J. Exp. Mar. Biol. Ecol. 467, 33–38.

Brothers, C.J., McClintock, J.B., 2018. Sea urchins exposed to near-future elevated seawater temperature alter resource allocation under low quality food conditions. Mar. Biol. 165, 43.

Burnell, O.W., Russell, B.D., Irving, A.D., Connell, S.D., 2013. Eutrophication offsets increased sea urchin grazing on seagrass caused by ocean warming and acidification. Mar. Ecol. Prog. Ser. 485, 37–46.

Byrne, M., 1990. Annual reproductive cycles of the commercial sea urchin Paracentrotus lividus from an exposed intertidal and a sheltered subtidal habitat on the west coast of Ireland. Mar. Biol. 104, 275–289.

Byrne, M., Ho, M., Selvakumaraswamy, P., Nguyen, H. D., Dworjanyn, S. A., Davis, A. R., 2009. Temperature, but not pH, compromises sea urchin fertilization and early development under near-future climate change scenarios. P. Roy. Soc. B- Biol. Sci., 276(1663), 1883–1888.

Byrne, M., 2011. Impact of ocean warming and ocean acidification on marine invertebrate life history stages: vulnerabilities and potential for persistence in a changing ocean. Ocean Mar. Biol. Annu. Rev. 49,1–42.

Chang, Y.Q., Wang, Z.C., Wang, G.J., 1999. Effect of temperature and algae on feeding and growth in sea urchin, Strongylocentrotus intermedius. J. Fisher China. 23, 69– 76 (in Chinese with English abstract).

Chefaoui, R.M., Serebryakova, A., Engelen, A.H., Viard, F., Serrão, E.A., 2019. Integrating reproductive phenology in ecological niche models changed the predicted future ranges of a marine invader. Divers. Distrib. 25, 688–700.

Chen, C.P., Chen, B.Y., 1992. Effects of high temperature on larval development and metamorphosis of Arachnoides placenta (Echinodermata: Echinoidea). Mar. Biol. 112, 445–449.

Chihrane, J., Lauge, G., 1994. Effects of high-temperature shocks on male germinal cells of Trichogramma brassicae (Hymenoptera, Trichogrammatidae). Entomophaga. 39, 11 ± 20.

Chiu, S.T., 1990. Age and growth of Anthocidaris crassispina (Echinodermata: echinoidea) in Hong Kong. B. Mar. Sci. 47, 94–103.

Christiansen, J.S., Mecklenburg, C.W., Karamushko, O.V., 2014. Arctic marine fishes and their fisheries in light of global change. Global Change Biol., 20, 652–659.

Cohet, Y., 1973. Stérilité mâle provoquée par une basse température de développement chez Drosophila melanogaster. Comptes Rendus de l’Académie des Sciences. 276, 3343–3345.

Courchamp, F., Clutton-Brock, T., Grenfell, B., 1999. Inverse density dependence and the Allee effect. Trends Ecol. Evol. 14, 405–410. pmid:10481205.

David, J., Arens, M.-F., Cohet, Y., 1971. Stérilité mâle à haute température chez Drosophila melanogaster: nature, progressivité et réversibilité des effets de la chaleur. Comptes Rendus de l’Académie des Sciences. 272, 1007–1010.

Davis, A.J., Jenkinson, L.S., Lawton, J.H., Shorrocks, B., Wood, S., 1998. Making mistakes when predicting shifts in species range in response to global warming. Nature. 391, 783–786.

Dawson, T.P., Jackson, S.T., House, J.I., Prentice, I.C., Mace, G.M., 2011. Beyond predictions: Biodiversity conservation in a changing climate. Science. 332 (6025), 53–58.

Day, J.W., 1972. Temporal relationship between premeiotic DNA synthesis and heat- induced recombination in oocytes of Drosophila melanogaster. Retrospective theses and dissertations. 5899.

De Ridder, C., Lawrence, J.M., 1982. Food and feeding mechanisms: Echinoidea. In: Jangoux, M., Lawrence, J.M. (Eds.), Echinoderm Nutrition. A.A. Balkema Publishers, Rotterdam, The Netherlands, pp. 57–92.

Doney, S.C., Ruckelshaus, M., Duffy, J.E., Barry, J. P., Chan, F., English, C. A., Galindo, H.M., Grebmeier, J.M., Hollowed, A.B., Knowlton, N., Polovina, J., Rabalais, N.N., Sydeman, W.J., Talley, L.D., 2012. Climate change impacts on marine ecosystems. Annu. Rev. Mar. Sci. 4, 11–37.

Douke, A., Hamanaka, Y., 2001. Growth of a sea urchin Strongylocentrotus nudus reared in laboratory. Bulletin of the Kyoto Institute of Oceanic and Fishery Science. 23, 25–29 (in Japanese with English abstract).

Dumser, J.B., 1980. In vitro effects of ecdysterone on the spermatogonial cell cycle in Locustu. Int. J. Invert. Reprod. 2, 165–174.

Ebert, T.A., 1968. Growth rates of the sea urchin Strongylocentrotus purpuratus related to food availability and spine abrasion. Ecology. 49, 1075–1091.

Edwards, M., Richardson, A.J., 2004., Impact of climate change on marine pelagic phenology and trophic mismatch. Nature. 430, 881–884.

Elendt, B.P., 1989. Effects of starvation on growth, reproduction, survival and biochemical composition of Daphnia magna. Archiv für Hydrobiologie. 116, 415– 433.

FAO, 2016. FAO yearbook. Fishery and Aquaculture Statistics. 2014. Rome, Italy.

Farmanfarmaian, A., Giese, A.C., 1963. Thermal tolerance and acclimation in the western purple sea urchin, Strongylocentrotus purpuratus. Physiol. Zool. 36(3), 237–243.

Fang, S.H., Lu X.M., Liao, Z.Q., Lin, S.G., 2003. Seed production techniques of sea urchin (Anthocidaris crassispina) in south of Fujian. Mar. Sci. 27(4), 1–3 (in Chinese).

Feng, Y.Q., Xu, Z.J., Qin, R., Shen, M.H., Zeng, G.Q., 2006. The technique of artificial breeding of Anthocidaris crassispina. Mar. Sci. 30(1), 5–8 (in Chinese).

Fernandez, C., 1998. Seasonal changes in the biochemical composition of the edible sea urchin Paracentrotus lividus echinodermata: Echinoidea in a lagoonal environment. Mar. Ecol. 19(1), 1–11.

Fernandez, C., Boudouresque, C.F., 2000. Nutrition of the sea urchin Paracentrotus lividus (Echinodermata: Echinoidea) fed different artificial food. Mar. Ecol. Prog. Ser. 204, 131–141.

Fields, P.A., Graham, J.B., Rosenblatt, R.H., Somero, G.N., 1993. Effects of expected global climate change on marine faunas. Trends Ecol Evol. 8, 361–367. pmid: 21236196.

Fisher, R.A., 1930. The genetical theory of sexual selection. 1st ed. Oxford University Press.

Freeman, S.M., 2003. Size-dependent distribution, abundance and diurnal rhythmicity patterns in the short-spined sea urchin Anthocidaris crassispina. Estuarine, Coastal Shelf. Sci. 58, 703–713.

Fujisawa, H., Shigei, M., 1990. Correlation of embryonic temperature sensitivity of sea urchins with spawning season. J. Exp. Mar. Biol. Ecol. 136, 123–139.

Fujisawa, H., 1995. Variation in embryonic temperature sensitivity among groups of the sea urchin Hemicentrotus pulcherrimus, which differ in their habitats. Zool. Sci. 12, 583–589.

Giese, A.C., Huang, G. H., Farmanfarmaian, A., Boolootian, R., Lasker, R., 1959. Organic productivity in the reproductive cycle of the purple sea urchin. The Biological Bulletin. 116(1), 49–58.

Gienapp, P., Teplitsky, C., Alho, J.S., Mills, J.A., Merila¨, J., 2008 Climate change and evolution: disentangling environmental and genetic responses. Mol. Ecol. 17, 167– 178.

Giojalas, L., 1991. Alteraciones en la eficiencia reproductiva de machos de Triutomu in&tans (Klug) 1834, (Hemiptera, Reduviidae) oca- sionadas por exposition a temperatura infraoptima. Doctoral Thesis, Facultad de Ciencias E. F. Y N., Universidad National de Cordoba.

Giojalas, L.C., Catalá, S., 1993. Changes in male Triatoma infestans reproductive efficiency caused by a suboptimal temperature. Journal of Insect Physiology. 39(4), 297–302.

Glynn, P.W., 2008. Food web structure and dynamics of eastern tropical pacific coral reefs: Panamá and Galápagos Islands. In: McClanahan, T.R., Branch, G.M. (Eds.), Food webs and the dynamics of marine reefs. Oxford University Press, pp. 185– 208.

Gnaiger, E., Bitterlich, B., 1984. Proximate biochemical composition and caloric content calculated from elemental CHN analysis: a stoichiometric concept. Oecologia. 62, 289–298.

Griffiths, M., Perrott, P., 1976. Seasonal changes in the carotenoids of the sea urchin Strongylocentrotus droebachiensis. Comp. Biochem. Physiol. 55B, 435–441.

Guillou, M., Lumingas, L.J.L., 1999. Variation in the reproductive strategy of the sea urchin Sphaerechinus granularis (Echinodermata: Echinoidea) related to food availability. J. Mar. Biol. Ass. UK. 79, 131–136.

Hagen, N.T., Jørgensen, I., Egeland, E.S., 2008. Sex-specific seasonal variation in the carotenoid content of sea urchin gonads. Aquat. Biol. 3, 227–235.

Hamilton, W.D., 1967. Extraordinary sex ratios. Science. 156, 477–488.

Hammer, B.W., Hammer, H.S., Watts, S.A., Desmond, R.A., Lawrence, J.M., Lawrence, A.L., 2004. The effects of dietary protein concentration on feeding and growth of small Lytechinus variegatus (Echinodermata: Echinoidea). Mar. Biol. 145, 1143– 1157.

Hammer, H., Hammer, B., Watts, S., Lawrence, A., Lawrence, J., 2006. The effect of dietary protein and carbohydrate concentration on the biochemical composition and gametogenic condition of the sea urchin Lytechinus variegatus. J. Exp. Mar. Biol. Ecol. 334(1), 109–121.

Hardy, N.A., Lamare, M., Uthicke, S. et al., 2014. Thermal tolerance of early development in tropical and temperate sea urchins: Inferences for the tropicalization of eastern Australia. Mar. Biol. 161, 395.

Hart, M.W., Scheibling, R.E., 1988. Heat waves, baby booms and the destruction of kelp beds by sea urchins. Mar. Biol. 99, 167–176.

Hayashi, I., Konno, T., Yamakawa. H., 2000. Distributional characteristics of benthic organisms in shallow sublittoral rocky areas of Mikuni, Fukui Prefecture: part of the survey on the effects of the Nakhodka oil spill. Bull. Jap. Sea Natl. Fish. Res. Inst. 50, 43–137 (in Japanese).

Helaouet, P., Beaugrand, G., 2009. Physiology, ecological niches and species distribution. Ecosystems. 12, 1235–1245.

Hill, S.K., Lawrence, J.M., 1999. Effects of food and temperature on the energy budget of Arbacia punctulata and Lytechinus variegatus. In: Candia Carnevali, M.D., Bonoasoro, F.B. (Eds.), Echinoderm Research. A.A. Balkema, Rotterdam, Brookfield, pp. 73–78.

Hochachka, P.W., Somero, G.N., 2002. Biochemical adaptation: mechanism and process in physiological evolution. Oxford University Press, Oxford.

Hollowed, A.B., Planque, B., Loeng, H., 2013. Potential movement of fish and shellfish stocks from the sub-Arctic to the Arctic Ocean. Fish Oceanog. 22, 355–370.

Horii, T., 1997. The Annual reproductive cycle and lunar spawning rhythms of the purple sea urchin Anthocidaris crassispina. Nippon Suisan Gakkaishi. 63, 17–22 (in Japanese).

Humason, G.L., 1979. Animal Tissue Techniques, 4th. San Francisco: Freeman, New York.

Huntingford, F., Jobling, M., Kadri, S., 2010. Aquaculture and Behavior. Oxford: Wiley-Blackwell. pp. 340.

Inomata, 2015. Study on feeding, digestion and absorption of urchins associated with nutrient allocation of body compartments. Chapter III, pp. 38. URL: http://hdl.handle.net/10097/61417 (In Japanese).

IPCC Climate Change 2019: Special report: Global Warming of 1.5°C. https://www.ipcc.ch/sr15/chapter/spm/spm-a/.

Ito, Y., 2014. Geographic change of sea urchin in Akita Prefecture, Japan. Akita Sakigake Shinpo newspaper, Akita, Japan 14th August (In Japanese).

Ito, Y., Hayashi, I., 1999. Behavior of the sea urchin, Strongylocentrotus nudus and S. intermedius, observed under experimental conditions in the laboratory. Otsuchi Marine Science. 24, 24–29 (in Japanese with English abstract).

Japanese Meteorological Agency, 2018. http://www.data.jma.go.jp/fcd/yoho/typhoon/route_map/bstv2010.html. Cited 20 June 2018.

Jensen, M., 1969. Age determination of Echinoids. Sarsia. 37, 41–44.

Johnson, C.R., Ling, S.D., Ross, D.J., Shepherd, S., Miller, K.J., 2005. Establishment of the long-spined sea urchin (Centrostephanus rodgersii) in Tasmania: first assessment of potential threats to fisheries. FRDC Final Report, Project No. 2001/044.

Kapsenberg, L., Okamoto, D.K., Dutton, J.M., Hofmann, G.E., 2017. Sensitivity of sea urchin fertilization to pH varies across a natural pH mosaic. Ecol. Evol. 7, 1737– 1750.

Kawamura, K., 1993. Uni Zouyoushoku to Kakou, Ryutsu. Hokkai Suisan Company, Sapporo (in Japanese).

Kearney, M., Porter, W., 2009. Mechanistic niche modelling: combining physiological and spatial data to predict species’ ranges. Ecol. Lett. 12, 334–350.

Kennedy, E.J., Robinson, S.M.C., Parsons, G.J., Castell, J.D., 2007. Effect of protein source and concentration on somatic growth of juvenile green sea urchins Strongylocentrotus droebachiensis. J. Word Aquacult. Soc. 36(3), 320–336.

King, C.K., Hoegh-Guldberg, O., Byrne, M., 1994. Reproductive cycle of Centrostephanus rodgersii (Echinoidea), with recommendations for the establishment of a sea urchin fishery in New South Wales. Mar. Biol. 120, 95–106.

Kirihara, S., Fujikawa, Y., 2018. Study on the algal field in the coastal of Sea of Japan in Aomori Prefecture, Japan. Japanese society of phycology. The 42th annual meeting. Poster presentation pp. 32.

Kiyomoto, S., 2011. Population dynamics of the sea urchin Anthocidaris crassispina on the boulder coast of Tachibana Bay, Nagasaki Prefecture, with special reference to the influence of typhoons. Jpn J Benthol. 66, 48–60 (in Japanese).

Kleitman, N., 1941.The effect of temperature on the righting of echinoderms. Biol. Bull. 80, 292–298.

Klinger, T.S., Hsieh, H.L., Pangallo, R.A., Chen, C.P., Lawrence, J.M., 1986. The effect of temperature on feeding, digestion, and absorption, of Lytechinus variegatus (Lamarck) (Echinodermata: Echinoidea). Physiol. Zool. 59, 332–336.

Klinger, T.S., Watts, S.A., Forcucci, D., 1988. Effects of short term feeding and starvation on storage and synthetic capacities of the gut tissues of Lytechinus variegatus (Lamarck) (Echinodermata: Echinoidea). J. Exp. Mar. Biol. Ecol. 117, 187–195.

Kobayashi, N., 1969. Spawning periodicity of sea urchins at Seto. III. Tripneustes gratilla, Echinometra mathaei, Anthocidaris crassipina and Echinostrephus aciculatus. Sci. Eng. Rev. Doshisha. Univ. 9, 254–269.

Kofuji, P.Y.M., Akimoto, A., Hosokawa, H., Masumoto, T., 2005. Seasonal changes in proteolytic enzymes of yellowtail Seriola quinqueradiata (Temminck & Schlegel; Carangidae) fed extruded diets containing different protein and energy levels. Aquaculture. 36, 696–703.

Kumagai, N.H., Molinos, J.G., Yamano, H., Takao, S., Fujii, M., Yamanaka, Y., 2018. Ocean currents and herbivory drive macroalgae‐to‐coral community shift under climate warming. Proceedings of the National Academy of Sciences of the United States of America. 115, 8990–8995.

Lares, M.T., Pomory, C.M., 1998. Use of body components during starvation in Lytechinus variegatus (Lamarck) (Echinodermata: Echinoidea). J. Exp. Mar. Biol. Ecol. 225, 99–106.

Laugé, G., Masner, P., 1974. Incidences de températures élevées appliquées au cours du stade pupal sur les potentialités reproductrices des adultes de Drosophila melanogaster. Entomologia Experimentalis et Applicata. 17, 511–521.

Lawrence, J.M., Lawrence, A.L., Holland, N.D., 1965. Annual cycle in the size of the gut of the purple sea urchin, Strongylocentrotus purpuratus (Stimpson). Nature. 205, 1238–1239.

Lawrence, J.M., Lawrence, A.L., Giese, A.C., 1966. Role of the gut as a nutrient- storage organ in the purple sea urchin (Strongylocentrotus purpuratus). Physiol. Zool. 39, 281–290.

Lawrence, J.M., 1975. The effect of temperature–salinity combinations on the functional well-being of adult Lytechinus variegatus (Lamarck) (Echinodermata, Echinoidea). J. Exp. Mar. Biol. Ecol. 18, 271–275.

Lawrence, J.M., 1987. A functional biology of echinoderms. Croom Helm, London & Sydney.

Lawrence, J.M., McClintock, J. B., 1994. Echinodermata. Balkema. Energy acquisition and allocation by echinoderms (Echinodermata) in polar seas: adaptations for success. Echinoderms through Time, David Guille, Feral & Roux (eds). Balkema, Rotterdam, ISBN9054105143.

Ling, S.D., 2008. Range expansion of a habitat-modifying species leads to loss of taxonomic diversity: a new and impoverished reef state. Oecologia. 156, 883–894. Ling, S.D., Johnson, C.R., Frusher, S., King, C.K., 2008. Reproductive potential of a marine ecosystem engineer at the edge of a newly expanded range. Glo. Change Bio. 14, 907–915.

Ling, S.D., Johnson, C.R., 2009. Population dynamics of an ecologically important range-extender: kelp beds versus sea urchin barrens. Mar. Ecol. Prog. Ser. 374, 113–125.

Ling, S.D., Johnson, C.R., Ridgway, K., Hobday, A.J., Haddon, M., 2009. Climate- driven range extension of a sea urchin: inferring future trends by analysis of recent population dynamics. Global Change Biol. 15, 719–731.

Machiguchi, Y., Mizutori, S., Sanbonsuga, Y., 1994. Food preference of sea urchin Strongylocentrotus nudus in laboratory. Bull. Hokkaido Natl. Fish. Res. Inst. 58, 35–43 (in Japanese with English abstract).

Marsh, A.G., Watts, S.A., 2007. Biochemical and energy requirements of gonad development. Dev. Aqua. Fish. Sci. 37, 35–53.

Matsuno, T., Tsushima, M., 2001. Carotenoids in sea urchins. In: Lawrence, J.M. (ed.) Edible Sea Urchins: Biology and Ecology. Elsevier, New York, pp. 115–138.

Mayor, D.J., Cook, K., Thornton, B., Walsham, P., Witte, U.F.M., Zuur, A.F., Anderson, T.R., 2011. Absorption efficiencies and basal turnover of C, N and fatty acids in a marine Calanoid copepod. Funct. Ecol. 25, 509–518.

McBride, S.C., Pinnix, W.D., Lawrence, J.M., Lawrence, A.L., Mulligan, T.J., 1997. The effects of temperature on production of gonads by the sea urchin Strongylocentrotus franciscanusfed natural and prepared diets. J. World Aquacult. Soc. 28, 357–365.

McClintock, J.B., Pearse, J.S., 1987. Biochemical composition of antartic echinoderms. Comp. Biochem. Phys. B. 86B, 683–687.

Mercier, A., Hamel, J.F., 2009. Endogenous and exogenous control of gametogenesis and spawning in echinoderms. Amsterdam: Elsevier. pp. 302.

Meidel, S,K., Scheibling, R.E., 1999. Effects of food type and ration on reproductive maturation and growth of the sea urchin Strongylocentrotus droebachiensis. Mar. Biol. 134, 155–166.

Miegela, R.P., Paina, S.J., Wettere, W.H.E.J., Howarth, G.S., Stone, D.A.J., 2010. Effect of water temperature on gut transit time, digestive enzyme activity and nutrient digestibility in yellowtail kingfish (Seriola lalandi). Aquaculture. 308 (3–4), 145– 151.

Minor, M.A., Scheibling, R.E., 1997. Effects of food ration and feeding regime on growth and reproduction of the sea urchin Strongylocentrotus droebachiensis. Mar. Biol. 129, 159–167.

Mita, M., Nakamura, M., 1993. Phosphatidylcholine is an endogenous substrate for energy metabolism in spermatozoa of sea urchins of the order Echinoidea. Zool. Sci. 10, 73–83.

Miyamoto, K., Kohshima, S., 2006. Experimental and field studies on foraging behavior and activity rhythm of hard-spined sea urchin Anthocidaris crassispina. Fisher. Sci. 72(4), 796–803.

Mizuno, M., Eguchi, E., 2015. Geographic change of sea urchin in Toga Bay, Oga Peninsula, Japan. Asahi Shimbun newspaper. 14th April (In Japanese).

Montero-Torreiro, M.F., Garcia-Martinez, P., 2003. Seasonal changes in the biochemical composition of body components of the sea urchin, Paracentrotus lividus, in Lorbé (Galicia, north-western Spain). J. Mar. Biol. Assoc. UK. 83, 575– 581.

Mori, T., Tsuchiya, T., Amemiya, S., 1980. Annual gonadal variation in sea urchins of the orders Echinothurioida and Echinoida. Biol. Bull. 159, 728–736.

Moss, J.E., Lawrence, J.M., 1972. Changes in carbohydrate, lipid, and protein levels with age and season in the sand dollar Mellita Quinquiesperforata. J. Exp. Mar. Biol. Ecol. 8(3), 225–239.

Munday, P., Warner, R.R., Monro, K., Pandolfi, J.M., Marshall, D.J., 2013 Predicting evolutionary responses to climate change in the sea. Ecol. Lett. 16, 1488–1500.

Nagelkerken, I., Munday, P., 2016. Animal behaviour shapes the ecological effects of ocean acidification and warming: moving from individual to community-level responses. Global Change Biol. 22, 974–989.

Nakabayashi, N., Miura, N., Agatsuma, Y., Taniguchi, K., 2006. Growth and gonad production of the sea urchin Strongylocentrotus nudus in relation to marine algal communities along the Japan Sea coast of Akita Prefecture, northwestern Japan. Aquacult. Sci. 54(3), 365–374 (In Japanese).

Nakabayashi, 2016. Development of technologies for the maintenance, expansion and utilization of algae and rocky shores resources. Clarification of the reasons for the decrease of the algae site, restoration and construction technology development. Report of Akita Fisheries Promotion Center. pp. 235–236 (In Japanese).

Nguyen, K.D.T., Morley, S.A., Lai, C.H., Clark, M.S., Tan, K.S., et al., 2011. Upper temperature limits of tropical marine ectotherms: Global warming implications. PLoS ONE 6(12), e29340.

O’Connor, M.I., Bruno, J.F., Gaines, S.D., Halpern, B.S., Lester, S.E., Kinlan, B.P., Weiss, J.M., 2007. Temperature control of larval dispersal and the implications for marine ecology, evolution and conservation. Proc. Natl. Acad. Sci. 104, 1266–1271 Odagiri, A., Asuke, M., Sato, K., 1984. Gonadal maturation of the sea urchin Strongylocentrotus nudus, inhabiting in the deep water off shore of Okoppe, Aomori Prefecture. Scientific reports of aquaculture center Aomori prefecture 3, 1–7 (in Japanese with English abstract).

Okey, T.A., Banks, S., Born et al., 2004. A trophic model of a Galápagos subtidal rocky reef for evaluating fisheries and conservation strategies. Ecol. Model. 172, 383– 401.

Ordzie, C.J., Garofalo, G.C., 1980. Behavioral recognition of molluscan and echinoderm predators by the bay scallop, Argopecten irradians (Lamarck) at two temperatures. J. Exp. Mar. Biol. Ecol. 43, 29–37.

Palmer, A.R., 1994. Temperature sensitivity, rate of development, and time to maturity: geographic variation in laboratory-reared Nucella and a cross-phyletic overview. In Reproduction and development of marine invertebrates (eds W. H. Wilson, S. A. Stricker & G. L. Shinn), pp. 177–194. Baltimore, MD: Johns Hopkins University Press.

Parmesan, C., Yohe, G., 2003. A globally coherent fingerprint of climate change impacts across natural systems. Nature. 421, 37–42.

Pearce, C.M., Daggett, T.L., Robinson, S.M.C., 2002. Effect of protein source ratio and protein concentration in prepared diets on gonad yield and quality of the green sea urchin, Strongylocentrotus droebachiensis. Aquaculture, 214(1–4), 307–332.

Pearce, C.M., Daggett, T.L., Robinson, S.M.C., 2004. Effect of urchin size and diet on thegonad yield and quality in the green sea urchin (Strongylocentrotus droebachiensis). Aquaculture. 233, 337–367.

Pearse J.S., 1975. Astronomical cycles: Lunar reproductive rhythms in sea urchins. A review. J. Interdisciplinary Cycle Res. 6, 47–52.

Peck, L.S., Clark, M.S., Morley, S.A., Massey, A., Rossetti H., 2009. Animal temperature limits and ecological relevance: effects of size, activity and rates of change. Funct. Ecol. 23, 248–256.

Peck, L.S., 2005. Prospects for survival in the Southern ocean: Extreme temperature sensitivity of benthic species. Antarct. Sci. 17(4), 497–507.

Pechenik, J.A., 1987. Environmental influences on larval survival and development. In: Giese AC, Pearse JS (eds) Reproduction of marine invertebrates. Academic Press, New York, pp. 551–608.

Pecorino, D., Lamare, M.D., Barker, M.F., 2013. Reproduction of the diadematidae sea urchin Centrostephanus rodgersii in a recently colonized area of northern New Zealand. Mar. Biol. Res. 9, 157–168.

Percy, J.M., 1973.Thermal adaptation in the boreo-arctic echinoid, Strongylocentrotus droebachiensis (O. F. müller, 1776). II. Seasonal Acclimatization and Urchin Activity. Physiol. Biochem. Zool. 46(2), 129–138.

Pérez, A.F., Boy, C., Morriconi, E., Calvo, J., 2010. Reproductive cycle and reproductive output of the sea urchin Loxechinus albus (Echinodermata: Echinoidea) from Beagle Channel, Tierra del Fuego, Argentina. Polar. Biol. 33, 271–280.

Poloczanska, E.S., Brown, C.J., Sydeman, W.J., Kiessling, W., Schoeman, D.S., Moore, P. J., 2013. Global imprint of climate change on marine life. Nat. Clim. Change. 2, 919–915.

Poloczanska, E.S., Burrows, M.T., Brown, C.J., García Molinos, J., Halpern, B.S., Hoegh‐Guldberg, O., Sydeman, W.J., 2016. Responses of marine organisms to climate change across oceans. Front. Mar. Sci. 3, 62.

Poorbagher, H., Lamare, M.D., Barker, M.F., 2010. Effects of nutrition on somatic growth and reproductive strategy of the sea urchin Pseudechinus huttoni. Mar. Biol. Res. 6, 292–301.

Pörtner, H.O., 2001. Climate change and temperature dependent biogeography: oxygen limitation of thermal tolerance in animals. Naturwissenschaften. 88, 137–146.

Pörtner, H.O., 2002. Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals. Comparative Biochemistry and Physiology Part A. 132, 739–761.

Pörtner, H.O., Knust, R. 2007. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science. 315, 95–97.

Pörtner, H.O. et al., 2014. In Climate Change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel of climate change (eds Field, C. B. et al.) 411–484 (Cambridge Univ. Press, 2014).

Reitzel, A.M., Miles, C.M., Heyland, A., Cowart, J.D., McEdward, L.R., 2005. The contribution of the facultative feeding period to echinoid larval development and size at metamorphosis: a comparative approach. J. Exp. Mar. Biol. Ecol. 317, 189– 201.

Ricciardi, A., Steiner, W.W.M., Mack, R.N., Simberloff, D., 2000. Toward a global information system for invasive species. Bioscience. 50, 239–244.

Ridgway, K.R., 2007. Long-term trend and decadal variability of the southward penetration of the East Australian Current. Geophys. Res. Lett. 34, L13613.

Robinson, A., Recckio, J., Altmann, C.F., 2002a. Method and system for providing customized color cosmetics. US6338349B1.

Robinson, S.M.C., Castell, J.D., Kennedy, E.J., 2002b. Developing suitable colour in thegonads of cultured green sea urchins (Strongylocentrotus droebachiensis). Aquaculture. 206, 289–303.

Rocha, F., Baião, L.F., Moutinho, S., Reis, B., Oliveira, A., Arenas, F., Maia, M.G.R., Fonseca, A. J.M., Pintado, M., Valente L.M.P., 2019. The effect of sex, season and gametogenic cycle on gonad yield, biochemical composition and quality traits of Paracentrotus lividus along the North Atlantic coast of Portugal. Sci. Rep. 9, 2994.

Roman, M.R., 1983. Nitrogenous nutrition of marine invertebrates. Pages 347–383 in E. J. Carpenter and D. G. Capone, eds. Nitrogen in the marine environment. Academic Press, New York.

Russell, M.P., 1998. Resource allocation plasticity in sea urchins: rapid, diet induced, phenotypic changes in the green sea urchin, Strongylocentrotus droebachiensis (Muller). J. Exp. Mar. Biol. Ecol. 220, 1–14.

Saba, G.K., Schofield, O., Torres, J.J., Ombres, E.H., Steinberg, D.K., 2012. Increased feeding and nutrient excretion of adult Antarctic Krill, Euphausia superba, exposed to enhanced carbon dioxide (CO2). PLoS ONE. 7, e52224.

Sakai, Y., Tajima, K.I., Agatsuma, Y., 2004. Mass production of seed of the Japanese edible sea urchins Strongylocentrotus intermedius and Strongylocentrotus nudus. In: Lawrence, J.M., Guzma´n, O. (Eds.), Sea urchins: Fisheries and Ecology. DEStech Publications, Lancaster, pp. 287–298.

Sakairi, K., Yamamoto, M., Ohtsu, K., Yoshida, M., 1989. Environmental control of gonadal maturation in laboratory-reared sea urchins, Anthocidaris crassispina and Hemicentrotus pulcherrimus. Zool. Sci. 6, 721–730.

Sakuramoto, K., Sugiyama, H., & Suzuki, N. 2001. Models for forecasting sandfish catch in the coastal waters off Akita Prefecture and the evaluation of the effect of a 3-year fishery closure. Fisher. Sci. 67(2), 203–213.

Sawabe, T., Oda, Y., Shiomi, Y., Ezura, Y., 1995. Alginate degradation by bacteria isolated from the gut of sea urchins and abalones. Microb. Ecol. 30, 193–202.

Sewell, M.A., Young, C.M., 1999. Temperature limits to fertilization and early development in the tropical sea urchin Echinometra lucunter. J. Exp. Mar. Biol. Ecol. 236, 291–305.

Sherman, E., 2015. Can sea urchins beat the heat? Sea urchins, thermal tolerance and climate change. Peer J. 3, e1006.

Shigei, M., 1995. Echinozoa. In: Nishimura, S. (Ed.) Guide to seashore animals of Japan with color pictures and keys, II. Hoikusha, Osaka. pp. 538–552 (in Japanese). Shpigel, M., McBride, S.C., Marciano, S., Lupatsch, I., 2004. The effect of photoperiod and temperature on the reproduction of European sea urchin Paracentrotus lividus. Aquaculture. 232(1–4), 343–355.

Siikavuopioa, S.I., Christiansen, J.S., Dalea, T., 2006. Effects of temperature and season on gonad growth and feed intake in the green sea urchin (Strongylocentrotus droebachiensis). Aquaculture. 255(1–4), 389–394.

Siikavuopio, S.I., Mortensen, A., Christiansen, J.S., 2008. Effects of body weight and temperature on feed intake, gonad growth and oxygen consumption in green sea urchin, Strongylocentrotus droebachiensis. Aquaculture. 281, 77–82.

Sobero´n, J., Peterson, A.T., 2005. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics. 2, 1–10.

Somero, G.N., 2005. Linking biography to physiology: evolution and acclamatory adjustments of thermal limits. Front. Zool. 2, 1–9.

Sonnenholzner, J., Lafferty, K., Ladah, L.B., 2011. Food webs and fishing effect parasitism of the sea urchin Eucidaris galapagensis in the Galapagos Islands. Ecology. 92, 2276–2284.

Sonu, S.C., 1995. The Japanese sea urchin market. Citeseer. pp. 3–33.

Spirlet, C., Grosjean, P., Jangoux, M., 1998. Closed-circuit cultivation of the edible seaurchin Paracentrotus lividus: Optimization and control of gonadal growth. R. Mooi, M. Telford (Eds.), Echinoderms: San Francisco, Balkema, Rotterdam. pp. 835.

Spirlet, C., Grosjean, P., Jangoux, M., 2000. Optimization of gonad growth by manipulation of temperature and photoperiod in cultivated sea urchins, Paracentrotus lividus (Lamarck) (Echinodermata). Aquaculture. 185(1–2), 85–99.

Stephens, P.J., Boyle, P.R., 1978. Escape responses of the queen scallopChlamys opercularis(L.) (Mollusca: Bivalvia). Mar. Behav. Physiol. 5(2), 103–113.

Stephens, P.A., Sutherland, W.J., 1999. Consequences of the Allee effect for behaviour, ecology and conservation. Trend Ecol Evol. 14, 401–505.

Sudo, K., Watanabe, K., Yotsukura, N., Nakaoka, M., 2019. Predictions of kelp distribution shifts along the northern coast of Japan. Ecol. Res. 35(1), 47–60.

Sugimoto, T., Tajima, K., Tomita, K., 1982. Reproductive cycle of the sea urchin, Strongylocentrotus nudus, on the northern coast of Hokkaido. Sci. Rep. Hokkaido Fish. Exp. Stn. 24, 91–99 (in Japanese with English abstract).

Sunday, J.M., Bates, A.E., Dulvy, N.K, 2012. Thermal tolerance and the global redistribution of animals. Nat. Clim. Chang. 2, 686–690.

Tamaki, Y., 2004. Fisheries management of sandfish in Akita Prefecture. IIFET 2004 Japan Proceedings, 1–10.

Takagi, S., Murata, Y., Inomata, E., Endo, H, Aoki, M.N., Agatsuma, Y., 2017. Improvement of gonad quality of the sea urchin Mesocentrotus nudus fed the kelp Saccharina japonica during offshore cage culture. Aquaculture. 477, 50–61.

Templeton, G.F., 2011. A two-step approach for transforming continuous variables to normal: implications and recommendations for IS research. Commun. Assoc. Inf. Syst. 28, 41–58.

Terada, R., et al. 2019. Japan’s nationwide long‐term monitoring survey of seaweed communities known as the “Monitoring Sites 1000”: Ten‐year overview and future perspectives. Phycol. Res. doi:10.1111/pre.12395

Tsuji, S., Yoshiya, M., Tanaka, M., Kuwahara, A., Uchino, K., 1989. Seasonal changes in distribution and ripeness of gonad of a sea urchin Strongylocentrotus nudus in the western part of Wakasa Bay. Bull. Kyoto Pref. Mar. Cent., 12, 15–21 (in Japanese with English abstract).

Tsuji, S., Munekiyo, K.T., Hatanaka, T., Michiie, A., 1994. Mass mortality phenomenon of the sea urchin Strongylocentrotus nudus in the western part of Wakasa Bay. Bull. Kyoto Pref. Mar. Cent. 17, 51–54 (in Japanese).

Unuma, T., Yamamoto, T., Akiyama, T., Shiraishi, M., Ohta, H., 2003. Quantitative changes in yolk protein and other components in the ovary and testis of the sea urchin Pseudocentrotus depressus. J. Exp. Biol. 206, 365–372.

Urriago, J.D., Wong, J.C., Dumont, Y.C.P., Qiu, J.W., 2016. Reproduction of the short- spined sea urchin Heliocidaris crassispina (Echinodermata: Echinoidea) in Hong Kong with a subtropical climate. Reg. Stud. Mar. Sci. 8, 445–453.

Visser, M.E., 2008. Keeping up with a warming world: Assessing the rate of adaptation to climate change. P. Roy. Soc. Lond. B Biol. 275, 649–659.

Walker, C.W., Lesser, M.P., 1998. Manipulation of food and photoperiod promotes out- ofseason gametogenesis in the green sea urchin, Strongylocentrotus droebachiensis: Implications for aquaculture. Mar. Biol. 132, 663–676.

Walker, C.W., Unuma, T, McGinn, N.A., Harrington, L.M., Lesser, M.P., 2001. Reproduction of sea urchins. Edible sea urchins: Biology and Ecology. Elsevier Science B.V. pp. 5–26.

Walker, C.W., Harrington, L.H., Lesser, M.P., Fagerberg, W.R., 2005. Nutritive phagocyte incubation chambers provide a structural and nutritive microenvironment for germ cells of Strongylocentrotus droebachiensis, the green sea urchin. Biological Bulletin. 209, 31–48.

Walther, G., Post, E., Convey, P., Menzel A., Parmesan, C., Beebee, T.C., Fromentin, J., Hoegh-Guldberg, O., Bairlein, F., 2002. Ecological responses to recent climate change. Nature. 416, 389–395.

Williams, S.E., Shoo, L.P., Isaac, J.L., Hoffmann, A.A., Langham, G., 2008. Towards an integrated framework for assessing the vulnerability of species to climate change. Plos Biol. 6, 2621–2626.

Wolfe, K., Dworjanyn, S. A., Byrne, M., 2013. Effects of ocean warming and acidification on survival, growth and skeletal development in the early benthic juvenile sea urchin (Heliocidaris erythrogramma). Glob. Change Biol. 19, 2698– 2707.

Yamasaki, M., Kiyomoto, S., 1993. Reproductive cycle of the sea urchin Anthocidaris crassispina from Hirado Island, Nagasaki Prefecture. Bull Seikai Nat Fish Res Inst 71, 33–40.

Yatsuya, K., Nakahara, H., 2004. Density, growth and reproduction of the sea urchin Anthocidaris crassispina (A. Agassiz) in two different adjacent habitats, the Sargassum area and Corallina area. Fish. Sci. 70, 233–240.

Yoo, S.K., Hur, S.B., Ryu, H.B., 1982. Growth and spawning of the sea urchin Anthocidaris crassispina (A. Agassiz). Bull. Korean Fish. Soc. 15, 345–358.

Zalutskaya, E.A., Varaksina, G.S., Khotimchenko, Y.S., 1986. Glycogen content in the ovaries of the sea urchin Strongylocentrotus intermedius. Russ. J. Mar Biol. 5, 38– 44.

Zhang, L.S., Zhang, L.L., Shi, D.T., Wei, J., Chang, Y.Q., Zhao, C., 2017. Effects of long-term elevated temperature on covering, sheltering and righting behaviors of the sea urchin Strongylocentrotus intermedius. Peer J. 5, e3122.

Zhao, C., Zhang, L., Shi, D., Ding, J., Yin, D., Sun, J., Zhang, B., Zhang, L., Chang, Y., 2018. Transgenerational effects of ocean warming on the sea urchin Strongylocentrotus intermedius. Ecotoxicol. Environ. Saf. 151, 212–219.

Zhou, H.S., Luo, S.B., Zhang, W.J., Gao, L.L., Zhao, C., Chang, Y.Q., 2013. Effect of inbreeding on fertility rate, hatchability and larva development of sea urchin Strongylocentrotus intermedius. J. Dalian Ocean Univ. 5, 445–449.

Zhu, K.Y., Merzendorfer, H., Zhang, W., Zhang, J., Muthukrishnan, S., 2016. Biosynthesis, turnover, and functions of chitin in insects. Annual Review of Entomology. 61, 177–196.

Zielinski, S., Portner, H.O., 1996. Energy metabolism and ATP free energy change of the intertidal worm Sipunculus nudus below a critical temperature. J. Comp. Physiol. 166B, 492–500.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る