リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Understanding environmental influences on microchemistry and morphology of otoliths」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Understanding environmental influences on microchemistry and morphology of otoliths

Shengjian Jiang 東北大学

2022.03.25

概要

The rapidly changing environment of marine systems around the world has drawn attention from multiple perspectives, and the most concerned problems must include hypoxia and ocean acidification (OA). Fish otoliths have been long considered as a useful tool to study the living conditions of fish. Thus, this study mainly focused on microchemistry and morphology of otoliths to understand the correlation between fish and environmental problems they experienced.

To examine the current conditions of Tokyo Bay, marbled flounder captured from four locations inside and outside the Bay area were analyzed by Laser Ablation Inductively Coupled Mass Spectrometry (LA ICPMS) on otolith chemistry. Results showed that [Mn/Ca]otolith was different among locations, especially at young age. Fish in age 0 suggested the highest [Mn/Ca]otolith occurred in the inner Bay area, then the mouth areas of the Bay, and the lowest value was measured outside of the Bay. This result perfectly matched the expectation of hypoxic conditions in Tokyo Bay areas. In addition, a seasonal trend of increasing in [Mn/Ca]otolith from opaque zones to translucent zones in otoliths also supported the summer-occurring hypoxia in Tokyo Bay, since translucent zones are usually formed under high temperature. No significant difference was found in other elements, possibly indicating that other factors, such as temperature and salinity, were not much different among the Tokyo Bay areas.

Because the mechanism of the elevated [Mn/Ca]otolith under hypoxia remained unclear, and one explanation was the elevated [Mn/Ca]water caused by redox of Mn under hypoxia, we examined the correlation of Mn concentrations between water and otoliths. Juvenile marbled flounder were reared under constant Mn concentrations for two months, and chemistry of both water and otoliths were analyzed by ICPMS. Significant difference could be found between control and the chemical treatments, but no correlation was found between [Mn/Ca]otolith and [Mn/Ca]water. In addition, water sample collected from Tokyo Bay had a similar level of [Mn/Ca]water as the control at laboratory, but [Mn/Ca]otolith of Tokyo Bay was much higher than any treatment. An incremental Mn experiment was conducted with weekly increasing Mn concentrations for 11 weeks, and the result also suggested [Mn/Ca]otolith was not positively connected to [Mn/Ca]water. No positive correlation was found in olive flounder either. Based on these results, the increase in [Mn/Ca]otolith found under hypoxia seemed not be solely caused by water Mn, and the mechanism needs further examinations.

The impacts of OA on otolith morphology were studied too. Juvenile marbled flounder were reared under three pH groups: control pH 7.8, Group pH 7.5, and Group pH 6.8 for two months. Photos of the whole otoliths were taken, and analyzed by ImageJ on area, perimeter, solidity, length, width, and thickness. Area and thickness showed to be increasing as pH declined, and solidity revealed to be smoother under elevated H+. Significant difference found between control and treatments in area, thickness, and solidity suggested the possibility of using these measurements to study OA.

Our results found difference in [Mn/Ca]otolith among different locations around Tokyo Bay, potentially indicating the more severe hypoxic conditions of the Bay than the outside. However, the mechanism of hypoxia causing [Mn/Ca]otolith to increase seemed not to be water Mn. In addition, larger sized otoliths were formed under elevated H+, together with a smoother surface which could be examined through solidity.

この論文で使われている画像

参考文献

Abesser C. & Robinson R. (2010). Mobilisation of iron and manganese from sediments of a Scottish Upland reservoir. J. Limnol. 69: 42-53. doi: 10.3274/JL10-69-1-04

Adam C., Garnier-Laplace J., & Baudin J.P. (1997). Uptake from water, release and tissue distribution of 54Mn in the rainbow trout (Oncorhynchus mikiss Walbaum). Environmental Pollution 97: 29-38.

Alfonso S., Gesto M., and Sadoul B. (2020). Temperature increase and its effects on fish stress physiology in the context of global warming. Journal of Fish Biology 98: 1496-1508. https://doi.org/10.1111/jfb.14599

Alves A., Gregorio S.F., Ruiz-Jarabo I., & Fuentes J. (2020). Intestinal response to ocean acidification in the European sea bass (Dicentrarchus labrax). CBPA 250. doi: 10.1016/j.cbpa.2020.110789

Avigliano E., Carvalho B., Velasco G., Tripodi P., Vianna M., & Volpedo A.V. (2017). Nursery areas and connectivity of the adults anadromous catfish (Genidens barbus) revealed by otolith-core microchemistry in the south-western Atlantic Ocean. Marine and Freshwater Research 68: 931-940. doi: 10.1071/MF16058

Bednarsek N., Feely R.A., Reum J.C.P., Peterson B., Menkel J., Alin S.R., & Hales B. (2014). Limacina helicina shell dissolution as an indicator of declining habitat suitability owing to ocean acidification in the California Current Ecosystem. Proceedings of the Royal Society B-Biological Sciences 281. doi: 10.1098/rspb.2014.0123

Bignami S., Sponaugle S., & Cowen R. K. (2013). Response to ocean acidification in larvae of a tropical marine fish, Rachycentron canadum. Glob. Change Biol. 19: 996-1006. doi: 10.1111/gcb.12133 279

Bignami S., Sponaugle S., & Cowen R. K. (2014). Effects of ocean acidification on the larvae of a high-value pelagic fisheries species, mahi-mahi Coryphaena hippurus. Aquat. Biol. 21: 249-260. doi: 10.3354/ab00598

Breitburg D.L. (1992). Episodic Hypoxia in Chesapeake Bay: Interacting Effects of Recruitment, Behavior, and Physical Disturbance. Ecological Monographs 62: 525-546. https://doi.org/10.2307/2937315

Brophy D., Jeffries T.E., & Danilowicz B.S. (2004). Elevated manganese concentrations at the cores of clupeid otoliths: possible environmental, physiological, or structural origins. Marine Biology 144: 779-786. doi: 10.1007/s00227-003-1240-3

Brown R.J. & Severin K.P. (2009). Otolith chemistry analyses indicate that water Sr:Ca is the primary factor influencing otolith Sr:Ca for freshwater and diadromous fish but not for marine fish. Canadian Journal of Fisheries and Aquatic Sciences 66: 1790-1808. doi: 10.1139/F09-112

Brown-Peterson N.J., Krasnec M.O., Lay C.R., Morris J.M., and Griffitt R.J. (2016). Responses of juvenile southern flounder exposed to Deepwater Horizon oil-contaminated sediments. Environmental Toxicology 36: 1067-1076. https://doi.org/10.1002/etc.3629

Burnett L.E. (1997). The challenges of living in hypoxic and hypercapnic aquatic environments. Am. Zool. 37: 633-640. doi: 10.2307/3884140

Catalan I.A., Alos J., Diaz-Gil C., Perez-Mayol S., Basterretxea G., Morales-Nin B., & Palmer M. (2018). Potential fishing-related effects on fish life history revealed by otolith microchemistry. Fisheries Research 199: 186-195. doi: 10.1016/j.fishres.2017.11.008

Campana S.E. (1997). Chemistry and composition of fish otoliths: pathways, mechanisms and applications. Marine Ecology Progress Series 188: 263-297.

Campana S.E., Chouinard G.A., Hanson J.M, Frechet A., & Brattey J. (2000). Otolith elemental fingerprints as biological tracers of fish stocks. Fisheries Research 46: 343-357.

Campana S.E. and Neilson J.D. (1985). Microstructure of Fish Otoliths. Can. J. Fish. Aquat. Sci. 42: 1014-1032.

Campana S.E., Thorrold S.R., Jones C.M., Gunther D., Tubrett M., Longerich H., ..., and Campbell J.L. (1997). Comparison of accuracy, precision and sensitivity in elemental assays of fish otoliths using the electron microprobe, proton-induced X-ray emission, and laser ablation inductively coupled plasma mass spectrometry. Can J Fish Aquat Sci 54: 2068-2079.

Checkley D. Jr., Dickson A., Takahashi M., Radich A., Eisenkolb N., & Asch R. (2009). Elevated CO2 enhances otolith growth in young fish. Science Vol. 324. doi: 10.1126/science.1169806

Chen C.C., Gong G.C., & Shiah F.K. (2007). Hypoxia in the East China Sea: One of the largest coastal low-oxygen areas in the world. Marine Environmental Research 64: 399-408. https://doi.org/10.1016/j.marenvres.2007.01.007

Chiba Prefecture (2019). Results of stock assessment 2018 of Chiba Prefecture (Japanese). Retrieved from https://www.pref.chiba.lg.jp/gyoshigen/shingikai/saibai-shigen/kekka/documents/p32- 47siryou.pdf

Chiba Prefecture (2021, June 14). Quick reports of hypoxic regions in Tokyo Bay (Japanese). Retrieved from https://www.pref.chiba.lg.jp/lab-suisan/suisan/suisan/suikaisokuhou/kako2011-.html

Clarke L. M., Thorrold S. R., & Conover D. O. (2011). Population differences in otolith chemistry have a genetic basis in Menidia menidia. Canadian Journal of Fisheries and Aquatic Sciences 68: 105–114.

Coffey M., Dehairs F., Collette O., Luther G., Church T., & Jickells T. (1997). The behaviour of dissolved barium in estuaries. Estuarine, Coastal and Shelf Science 45: 113–121. https://doi.org/10. 1006/ecss.1996.0157.

Coll-Llado C., Giebichenstein J., Webb P., Bridges C., & Garcia de la serrana D. (2018). Ocean acidification promotes otolith growth and calcite deposition in gilthead sea bream (Sparus aurata) larvae. Scientific Report 8: 8384. doi: 10.1038/s41598-018-26026-y

Cripps I.L., Munday P.L., & McCormick M.I. (2011). Ocean Acidification Affects Prey Detection by a Predatory Reef Fish. PLOS ONE 6. doi: 10.1371/journal.pone.0022736

Daniels H.V. & Watanabe W.O. (2010). Practical Flatfish Culture and Stock Enhancement. Blackwell Publishing, Iowa, USA.

Di Beneditto A.P.M. & Franco R.W.D. (2018). Mn2+ concentration in coastal fish otoliths: understanding environmental and biological influences from EPR. Journal of Biological Physics 44: 471-482. 10.1007/s10867-018-9502-y

Di Franco A., Calo A., Sdiri K., Cattano C., Milazzo M., & Guidetti P. (2019). Ocean acidification affects somatic and otolith growth relationship in fish: evidence from an in situ study. The Royal Society 2019. doi: 10.1098/rsbl.2018.0662

Dixson D.L., Munday P.L., & Jones G.P. (2010). Ocean acidification disrupts the innate ability of fish to detect predator olfactory cues. Ecology Letters 13: 68-75. doi: 10.1111/j.1461-0248.2009.01400.x

Dorval E., Jones C.M., Hannigan R., & van Montfrans J. (2006). Relating otolith chemistry to surface water chemistry in a coastal plain estuary. Can. J. Fish. Aquat. Sci. 64: 411-424. doi: 10.1139/F07-015

Doney S.C., Ruckelshaus M., Duffy J.E., Barry J.P., Chan F., English C.A., ... & Talley L.D. (2011). Climate Change Impacts on Marine Ecosystems. Annual Review of Marine Science 4: 11-37. https://doi.org/10.1146/annurev-marine-041911-111611

Dupont S., Dorey N., Stumpp M., Melzner F., & Thorndyke M. (2013). Long-term and trans-life-cycle effects of exposure to ocean acidification in the green sea urchin Strongylocentrotus droebachiensis. Marine Biology 160: 1835-1843. doi: 10.1007/s00227-012-1921-x

Elsdon T.S. and Gillanders B.M. (2003). Relationship between water and otolith elemental concentrations in juvenile black bream Acanthopagrus butcheri. Marine Ecology Progress Series 260: 263-272

Elsdon T.S. & Gillanders B.M. (2003). Reconstructing migratory patterns of fish based on environmental influences on otolith chemistry. Reviews in Fish Biology and Fisheries 13: 219-235.

Esbaugh A.J., Heuer R., & Grosell M. (2012). Impacts of ocean acidification on respiratory gas exchange and acid-base balance in a marine teleost, Opsanus beta. Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology 182: 921-934. doi: 10.1007/s00360-012-0668-5

European Environment Agency (unknown). Decline in ocean pH measured at the Aloha station. https://www.eea.europa.eu/data-and-maps/daviz/, accessed on 24 Jun. 2020.

Fang L., Chen Y.N., Wang J.W., Zhou Y.C., Shao W.Y., & Zhang Y.P. (2017). An investigation in dynamic processes and its influences of iron and manganese releases from reservoir sediment. Fresenius Environmental Bulletin 26: 646-653.

Fabricius K.E., Langdon C., Uthicke S., Humphrey C., Noonan S., De'ath G., Okazaki R., Muehllehner N., Glas M.S., & Lough J.M. (2011). Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nature Climate Change 1: 165-169. doi: 10.1038/NCLIMATE1122

Falini G., Fermani S., Vanzo S., Miletic M., and Zaffino G. (2005). Influence on the Formation of Aragonite or Vaterite by Otolith Macromolecules. Eur. J. Inorg. Chem. 2005: 162-167. doi: 10.1002/ejic.200400419

Farmer T.M., DeVries D.R., Wright R.A. & Gagnon J.E. (2013). Using Seasonal Variation in Otolith Microchemical Composition to Indicate Largemouth Bass and Southern Flounder Residency Patterns across an Estuarine Salinity Gradient. Transactions of the American Fisheries Society 142: 1415-1429. https://doi.org/10.1080/00028487.2013.806348

Feely R., Doney S., & Cooley S. (2009). Ocean acidification: present conditions and future changes in a high-CO2 world. Oceanography 22: 36-47.

Ferrari M.C.O., McCormick M.I., Munday P.L., Meekan M.G., Dixson D.L., Lonnstedt O. & Chivers D.P. (2011). Putting prey and predator into the CO2 equation- qualitative and quantitative effects of ocean acidification on predator-prey interactions. Ecology Letters 14: 1143-1148. doi: 10.1111/j.1461-0248.2011.01683.x

Fishbase. Retrieved from: http://www/fishbase.org/

Forrester G.E. (2005). A field experiment testing for correspondence between trace elements in otoliths and the environment and for evidence of adaptation to prior habitats. Estuaries 28: 974-981.

Foscarini R. (1988). A review: Intensive farming procedure for red sea bream (Pagrus major) in Japan. Aquaculture 72: 191-246.

Franco R.W.D.A., Sampaio J.A., Medina A., & Beneditto P.M.D. (2013). A new approach to marine fish otoliths study: electron paramagnetic study. Journal of the Marine Biological Association of the United Kingdom 93: 1973-1980. doi: 10.1017/S0025315413000520

Frommel A.Y., Schubert A., Piatkowski U., & Clemmesen C. (2013). Egg and early larval stages of Baltic cod, Gadus morhua, are robust to high levels of ocean acidification. Marine Biology 160: 1825-1834. https://doi.org/10.1007/s00227-011-1876-3

Gal A., Weiner S., & Addadi L. (2015). A perspective on underlying crystal growth mechanisms in biomineralization: solution mediated growth versus nanosphere particle accretion. Royal Society of Chemistry 17: 2606-2615. doi: 10.1039/C4CE01474J

Gao G., Clare A.S., Rose C., & Caldwell G.S. (2016). Eutrophication and warming-driven green tides (Ulva rigida) are predicted to increase under future climate change scenarios. Marine Pollution Bulletin 114: 439-447. https://doi.org/10.1016/j.marpolbul.2016.10.003

Gattuso J. and Hansson L. (2011). Ocean acidification. Oxford University Press. New York, USA.

Gillanders B.M. (2005). Otolith chemistry to determine movements of diadromous and freshwater fish. Aquatic Living Resources 18: 291-300. doi: 10.1051/alr:2005033

Grall J. and Chauvaud L. (2002). Marine eutrophication and benthos The need for new approaches and concepts. Global Change Biology 8: 813-830.

Gray J.S., Wu R.S., and Or Y.Y. (2002). Effects of hypoxia and organic enrichment on the coastal marine environment. Marine Ecology Progress Series 238: 249-279.

Grønkjær P. (2016). Otoliths as individual indicators: a reappraisal of the link between fish physiology and otolith characteristics. Marine and Freshwater Research 67: 881-888. http://dx.doi.org/10.1071/MF15155

Guinotte J. M. & Fabry V. J. (2008). Ocean acidification and its potential effects on marine ecosystems. Ann. N. Y. Acad. Sci. 1134: 320-342. doi: 10.1196/annals.1439.013

Hagy J.D., Boynton W.R., Keefe C.W., & Wood K.V. (2004). Hypoxia in Chesapeake Bay, 1950-2001: Long-term change in relation to nutrient loading and river flow. Estuaries 27: 634–658. https://doi.org/10.1007/BF02907650

Hamer P.A. & Jenkins G.P. (2007). Comparison of spatial variation in otolith chemistry of two fish species and relationships with water chemistry and otolith growth. Journal of Fish Biology 71: 1035-1055. https://doi.org/10.1111/j.1095-8649.2007.01570.x

Hanson P.J. and Zdanowicz V.S. (1999). Elemental composition of otoliths from Atlantic croaker along an esturine pollution gradient. Journal of Fish Biology 54: 656-668.

Hata, M. , Sugimoto, R. , Hori, M. , Tomiyama, T. , & Shoji, J. (2016). Occurrence, distribution and prey items of juvenile marbled sole Pleuronectes yokohamae around a submarine groundwater seepage on a tidal flat in southwestern Japan. Journal of Sea Research, 111, 47-53. doi: 10.1016/j.seares.2016.01.009

Hermann T.W., Stewart D.J., Limburg K.E., Castello L. (2016). Unravelling the life history of Amazonian fishes through otolith microchemistry. Royal Society Open Science 3. doi: 10.1098/rsos.160206

Hong P., Jiang S., & Katayama S. (2021). Experimental study on the influence of water temperature on the otolith formation of the marbled flounder (Pseudopleuronectes yokohamae). Int. Aquat. Res. 13: 119-128.

Hu J., You F., Wang Q., Weng S., Liu H., Wang L., Zhang P.J., & Tan X. (2014). Transcriptional Responses of Olive Flounder (Paralichthys olivaceus) to Low Temperature. PLoS ONE 9(10): e108582. https://doi.org/10.1371/journal.pone.0108582

Hüssy K., Limburg K., de Pontual H., Thomas O., Cook P., Heimbrand Y., Blass M. & Sturrock A. (2021). Trace Element Patterns in Otoliths: The Role of Biomineralization. Reviews in Fisheries Science & Aquaculture 29: 445-477. doi: 10.1080/23308249.2020.1760204

Ikejima K. & Shimizu M. (1999). Disappearance of a spring cohort in a population of the dragonet, Repomucenus valenciennei, with spring and autumn spawning peaks in Tokyo Bay, Japan. Ichthyological Research 46: 331-339.

IPCC AR6 WGI (2021). Chapter 4: Future global climate: scenario-based projections and near-term information (2022, January 6). Retrieved from https://www.ipcc.ch/report/ar6/wg1/#FullReport

Ishii M. (2021). Nutrient supply due to the development of hypoxia in Tokyo Bay. 月刊海洋 53: 489-494. Japanese only.

Ishii, M. , Hasegawa, K. , & Kakino, J. (2008). Long-term fluctuations of the water quality in Tokyo Bay judged from a data set of Chiba Prefecture. Bulletin of the Japanese Society of Fisheries Oceanography, 72, 189-199.

Izzo C., Doubleday Z.A., Schultz A.G., Woodcock S.H., & Gillanders B.M. (2015). Contribution of water chemistry and fish condition to otolith chemistry: comparisons across salinity environments. Journal of Fish Biology 86: 1680-1698. doi: 10.1111/jfb.12672

Jenny J., Arnaud F., Alric B., Dorioz J., Sabatier P., Meybeck M., and Perga M. (2014). Inherited hypoxia: A new challenge for reoligotrophicated lakes under global warming. Global Biogeochemical Cycles 28: 1413-1423. https://doi.org/10.1002/2014GB004932

Jiang S. (2017). Evidence of Exposure to Hypoxia and Acidification in Otoliths of Atlantic Croaker from the Gulf of Mexico (Unpublished master’s thesis). Texas Tech University, Lubbock, TX.

Jung S.J., Kim S.R., Joung I.Y., Kitamura S.I., Ceong H.T., & Oh M.J. (2008). Distribution of marine birnavirus in cultured olive flounder Paralichthys olivaceus in Korea. J Microbiol. 46: 265–273. https://doi.org/10.1007/s12275-008-0004-7

Järvalt A., Laas A., Nõges P., & Pihu E. (2004). The influence of water level fluctuations and associated hypoxia on the fishery of Lake Võrtsjärv, Estonia. Ecohydrology & Hydrobiology 4: 487-497.

Kang B., Bakun A., Lin L., and Pauly D. (2021). Increase of a hypoxia-tolerant fish, Harpadon nehereus (Synodontidae), as a result of ocean deoxygenation off southwestern China. Environmental Biology of Fishes (2021). https://doi.org/10.1007/s10641-021-01130-7

Khangaonkar T., Nugraha A., Premathilake L., Keister J. & Borde A. (2021). Projections of algae, eelgrass, and zooplankton ecological interactions in the inner Salish Sea – for future climate, and altered oceanic states. Ecol. Model. 441: 1. doi: 10.1016/j.ecolmodel.2020.109420

Kodama, K. & Horiguchi, T. (2011). Effects of hypoxia on benthic organisms in Tokyo Bay, Japan: A review. Marine Pollution Bulletin, 63, 215-220. doi: 10.1016/j.marpolbul.2011.04.022

Kristiansen K.D., Kristensen E., & Jensen M.H. (2002). The Influence of Water Column Hypoxia on the Behaviour of Manganese and Iron in Sandy Coastal Marine Sediment. Estuarine, Coastal and Shelf Science 55: 645-654. doi: 10.1006/ecss.2001.0934

Lee, J. , Kodama, K. , Oyama, M. , Shiraishi, H. , & Horiguchi, T. (2016). Effect of water temperature on survival of early-life stages of marbled flounder Pleuronectes yokohamae in Tokyo Bay, Japan. Marine Environmental Research, 128, 107-113. doi: 10.1016/j.marenvres.2016.05.024

Limburg K.E. & Casini M. (2019). Otolith chemistry indicates recent worsened Baltic cod condition is linked to hypoxia exposure. Biology Letters, 15. doi: 10.1098/rsbl.2019.0352

Limburg K.E., Lochet A., Driscoll D., Dale D.S., & Huang R. (2010). Selenium detected in fish otoliths: a novel tracer for a polluted lake? Environmental Biology of Fishes 89: 433-440. doi: 10.1007/s10641-010-9671-4

Limburg, K. E. , Olson, C. , Walther, Y. , Dale, D. , Slomp, C. P. , & Hoie, H. (2011). Tracking Baltic hypoxia and cod migration over millennia with natural tags. Environmental Sciences, 108, 177-182. www.pnas.org/lookup/suppl/doi:10.1073/pnas.1100684108

Limburg, K. E. , Walther, B. D. , Lu, Z. L. , Jackman, G. , Mohan, J. , Walther, Y. , Nissling, A. , Weber, P. K. , & Schmitt, A. K. (2015). In search of the dead zone: Use of the otoliths for tracking fish exposure to hypoxia. Journal of Marine Systems, 141, 167-178. doi: 10.1016/j.jmarsys.2014.02.014

Lychakov D.V. & Rebane Y.T. (2005). Fish otolith mass asymmetry: morphometry and influence on acoustic functionality. Hearing Research 201: 55-69. doi: 10.1016/j.heares.2004.08.017

Lloyd D.C., Zacherl D.C., Walker S., Paradis G., Sheehy M., & Warner R.R. (2008). Egg source, temperature and culture seawater affect elemental signatures in Kelletia kelletii larval statoliths. Marine Ecology Progress Series 353: 115-130. doi: 10.3354/meps07172

Lowe M.R., DeVries D.R., Wright R.A., Ludsin S.A., & Fryer B.J. (2009). Coastal largemouth bass (Micropterus salmoides) movement in response to changing salinity. Canadian Journal of Fisheries and Aquatic Sciences 66. https://doi.org/10.1139/F09-152

Lowe M.R., DeVries D.R., Wright R.A., Ludsin S.A., & Fryer B.J. (2011). Otolith microchemistry reveals substantial use of freshwater by southern flounder in the northern Gulf of Mexico. Estuaries and Coasts 34: 630–639. https://doi.org/10.1007/s12237-010-9335- 9.

Lundberg Y., Zhao X., & Yamoah E.N. (2006). Assembly of the otoconia complex to the macular sensory epithelium of the vestibule. Brain Research 1091: 47-57. doi: 10.1016/j.brainres.2006.02.083

Macdonald J.I. & Crook D.A. (2010). Variability in Sr:Ca and Ba:Ca ratios in water and fish otoliths across an estuarine salinity gradient. Marine Ecology Progress Series 413: 147-161. doi: 10.3354/meps08703

Maneja R., Frommel A., Geffen A., Folkvord A., Piatkowski U., Chang M., & Clemmesen C. (2013). Effects of ocean acidification on the calcification of otoliths of larval Atlantic cod Gadus morhua. Mar. Ecol. Prog. Ser. Vol. 477: 251-258. doi: 10.3354/meps10146

Martin G.B. & Thorrold S.R. (2005). Temperature and salinity effects on magnesium, manganese, and barium incorporation in otoliths of larval and early juvenile spot Leiostomus xanthurus. Marine Ecology Progress Series 293: 223-232.

Martin G.B. & Wuenschel M.J. (2006). Effect of temperature and salinity on otolith element incorporation in juvenile gray snapper Lutjanus griseus. Marine Ecology Progress Series 324: 229-239.

Martino J.C., Doubleday Z.A., Fowler A.J., & Gillanders B.M. (2020). Identifying physiological and environmental influences on otolith chemistry in a coastal fishery species. Marine and Freshwater Research 72: 922-921. doi: 10.1071/MF20196

Maulvault A.L., Santos L., Camacho C., Anacleto P., Barbosa V., Alves R. ... & Marques A. (2018). Antidepressants in a changing ocean: Venlafaxine uptake and elimination in juvenile fish (Argyrosomus regius) exposed to warming and acidification conditions. Chemosphere 209: 286-297. doi: 10.1016/j.chemosphere.2018.06.004

Mazloumi N., Doubleday Z.A., & Gillanders B.M. (2017). The effects of temperature and salinity on otolith chemistry of King George whiting. Fisheries Research 196: 66-74. 10.1016/j.fishres.2017.08.010

Merga L.B., Mengistie A.A., Faber J.H., and Van den Brink P.J. (2020). Trends in chemical pollution and ecological status of Lake Ziway, Ethiopia: a review focusing on nutrients, metals and pesticides. African Journal of Aquatic Science 45: 386-400. https://doi.org/10.2989/16085914.2020.1735987

Miller J.A. (2009). The effects of temperature and water concentration on the otolith incorporation of barium and manganese in black rockfish Sebastes melanops. Journal of Fish Biology 75: 39-60. doi: 10.1111/j.1095-8649.2009.02262.x

Mitamura, H. , Arai, N. , Hori, M. , Uchida, K. , Kajiyama, M. , & Ishii, M. (2020). Occurrence of a temperate coastal flatfish, the marbled flounder Pseudopleuronectes yokohamae, at high water temperatures in a shallow bay in summer detected by acoustic telemetry. Fisheries Sciences, 86, 77-85. https://doi.org/10.1007/s12562-019-01384-2

Mugiya Y., Watabe N., Yamada J., Dean J.M., Dunkelberger D.G., and Shimuzu M. (1981). Diurnal rhythm in otolith formation in the goldfish, Carassius auratus. Comp. Biochem. Physiol. 68A: 659-662.

Munday P.L., Gagliano M., Donelson J.M., Dixson D.L., & Thorrold S.R. (2011). Ocean acidification does not affect the early life history development of a tropical marine fish. Marine Ecology Progress Series: 423, 211-221. doi: 10.3354/meps08990

Munday P.L., Hernaman V., Dixson D.L., & Thorrold S.R. (2011). Effect of ocean acidification on otolith development in larvae of a tropical marine fish. Biogeosciences 8: 1631-1641. doi: 10.5194/bg-8-1631-2011

Murphy R.R., Kemp W.M., & Ball W.P. (2011). Long-Term Trends in Chesapeake Bay Seasonal Hypoxia, Stratification, and Nutrient Loading. Estuaries and Coasts 34: 1293–1309. https://doi.org/10.1007/s12237-011-9413-7

Nakayama K., Sivapalan M., Sato C., & Furukawa K. (2010). Stochastic characterization of the onset and recovery from hypoxia in Tokyo Bay, Japan: Derived distribution analysis based on “strong wind” events. Water Resources Research 46. doi: 10.1029/2009WR008900

Nelson T.R., DeVries D.R., & Wright R.A. (2018). Salinity and Temperature Effects on Element Incorporation of Gulf Killifish Fundulus grandis Otoliths. Estuaries and Coasts 41: 1164-1177. https://doi.org/10.1007/s12237-017-0341-z

Nicholls R.J., Wong P.P., Burkett V., Codignotto J., Hay J., McLean R., Ragoonaden S., and Woodroffe C.D. (2007). Coastal systems and low-lying areas. In: Climate change 2007: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK, pp. 315-356.

Nims M.K., & Walther B.D. (2014). Contingents of southern flounder from subtropical estuaries revealed by otolith chemistry. Transactions of the American Fisheries Society 143: 721–731.

Ou M., Hamilton T.J., Eom J., Lyall E.M., Gallup J., Jiang A., Lee J., Close D.A., Yun S.S., & Brauner C.J. (2015). Responses of pink salmon to CO2-induced aquatic acidification. Nature Climate Change 5. doi: 10.1038/NCLIMATE2694

Packer R., & Dunson W. (1970). Effects of Low Environmental pH on Blood pH and Sodium Balance of Brook Trout. Journal of Experimental Zoology 174: 65-72.

Pakhomava S.V., Hall P.O., Kononets M.Y., Rozanov A.G., Tengberg A., & Vershinin A.V. (2007). Fluxes of iron and manganese across the sediment-water interface under various redox conditions. Marine Chemistry 107: 319-331. https://doi.org/10.1016/j.marchem.2007.06.001

Parker L.M., Ross P.M., O’Connor W.A., Borysko L., Raftos D.A., & Portner H.O. (2012). Adult exposure influences offspring response to ocean acidification in oysters. Global Change Biology 18: 82-92. doi: 10.1111/j.1365-2486.2011.02520.x

Patterson H.M., Kingsford M.J., & McCulloch M.T. (2005). Resolution of the early life history of a reef fish using otolith chemistry. Coral Reefs 24: 222-229. https://doi.org/10.1007/s00338-004-0469-8

Payan P., Kossmann H., Watrin A., Mayer-Gostan N., & Boeuf G. (1997). Ionic composition of endolymph in teleosts: origin and importance of endolymph alkalinity. Journal of Experimental Biology 200: 1905-1912.

Perry S.F., Braun M.H., Genz J., Vulesevic B., Taylor J., Grosell M., & Gilmour K.M. (2010). Acid-base regulation in the plainfin midshipman (Porichthys notatus): an aglomerular marine teleost. J Comp Physiol B 180: 1213-1225. doi: 10.1007/s00360-010-0492-8

Pimentel M., Pegado M., Repolho T., & Rosa R. (2014). Impact of ocean acidification in the metabolism and swimming behavior of the dolphinfish (Coryphaena hippurus) early larvae. Marine Biology 161: 725-729. doi: 10.1007/s00227-013-2365-7

Prince E.D., Luo J., Goodyear C.P., Hoolihan J.P., Snodgrass D., Orbesen E.S., ...and Schirripa M.J. (2010). Ocean scale hypoxia-based habitat compression of Atlantic istiophorid billfishes. Fisheries Oceanography 19 (6): 448-462. doi:10.1111/j.1365-2419.2010.00556.x

Rabalais N.N., Diaz R.J., Levin L.A., Turner R.E., Gilbert D., and Zhang J. (2010). Dynamics and distribution of natural and human-caused hypoxia. Biogeosciences 7: 585-619.

Rabalais N.N., Turner R.E., & Wiseman W.J. Jr. (2002). Gulf of Mexico Hypoxia, A.K.A. “The Dead Zone.” Annu. Rev. Syst. 33: 235-63. doi: 10.1146/annurev.ecolsys.33.010802.150513

Radigan W.J., Carlson A.K., Kientz J.L., Chipps S.R., Fincel M.J., & Graeb B.D.S. (2018). Species- and habitat-specific otolith chemistry patterns inform riverine fisheries management. River Research and Applications 34: 279-287. doi: 10.1002/rra.3248

Reis-Santos P., Tanner S.E., Elsdon T.S., Cabral H.N., & Gillanders B.M. (2013). Effects of temperature, salinity and water composition on otolith elemental incorporation of Dicentrarchus labrax. Journal of Experimental Marine Biology and Ecology 446: 245-252. https://doi.org/10.1016/j.jembe.2013.05.027

Reis-Santos P., Vasconcelos R.P., Ruano M., Latkoczy C., Gunther D., Costa M.J., & Cabral H. (2008). Interspecific variations of otolith chemistry in estuarine fish nurseries. Journal of Fish Biology 72: 2595-2614. doi: 10.1111/j.1095-8649.2008.01871.x

Rodrigues R., Pedron J., Romano L., Tesser M. & Sampaio L. (2013). Acute responses of juvenile cobia Rachycentron canadum (Linnaeus 1766) to acid stress. Aquaculture Research 2013: 1-7. doi: 10.1111/are.12282

Rouleau C., Tjalve H., Gottogrey J., & Pelletier E. (1995). Uptake, distribution and elimination of 54Mn(II) in the brown trout (Salmo trutta). Environmental Toxicology and Chemistry 14: 483-490.

Ruttenberg B.I., Hamilton S.L., Hickford, M.J.H., Paradis G.L., Sheehy M.S., ... Warner R.R. (2005). Elevated levels of trace elements in cores of otoliths and their potential for use as natural tags. Marine Ecology Progress Series 297: 273-281. doi: 10.3354/meps297273

Sabine C.L., Feely R.A., Gruber N., Key R.M., Lee K., Bullister J.L., ... & Rios A.F. (2004). The Oceanic Sink for Anthropogenic CO2. Science 305: 367-371. doi: 10.1126/science.1097403

Sanchez-Jerez P., Gillanders B., & Kingsford M. J. (2002). Spatial variability of trace elements in fish otoliths: comparison with dietary items and habitat constituents in seagrass meadows. Journal of Fish Biology 61: 801–821.

Sato C., Nakayama K., & Furukawa K. (2012). Contributions of wind and river effects on DO concentration in Tokyo Bay. Estuarine, Coastal and Shelf Science 109: 91-97. http://dx.doi.org/10.1016/j.ecss.2012.05.023

Selberg C.D., Eby L.A., & Crowder L.B. (2001). Hypoxia in the Neuse River Estuary: Responses of Blue Crabs and Crabbers. North American Journal of Fisheries Management 21: 358-366.

Shafieipour, M. M. , Takahashi, T. , Ishino, K. , Konno, Y. , Nakao, H. , Sano, M. , . . . Takatsu, T. (2004). Annual Life Cycle of Adult Marbled Sole Pleuronectes yokohamae in the Coastal Waters around Kikonai Bay, Hokkaido, Japan. Suisanzoshoku, 52, 4, 351-358.

Shirakashi S., Tamada T., Yamada T., & Ogawa K. (2006). Infection dynamics of Neoheterobothrium hirame (Monogenea) on juvenile olive flounder, Paralichthys olivaceus (Temminck & Schlegel), in coastal waters of Japan. Journal of Fish Diseases 29: 319-329.

Smith W.E. & Kwak T.J. (2014). Otolith microchemistry of tropical diadromous fishes: spatial and migratory dynamics. Journal of Fish Biology 84: 913-928. doi: 10.1111/jfb.12317

Sturrock A.M., Trueman C.N., Milton J.A., Waring C.P., Cooper M.J., & Hunter E. (2014). Physiological influences can outweigh environmental signals in otolith microchemistry research. Mar. Ecol. Prog. Ser. 500: 245-264. doi: 10.3354/meps10699

Sundin J., Amcoff M., Mateos-Gonzalez F., Raby G. D., & Clark T. D. (2019). Long-term acclimation to near-future ocean acidification has negligible effects on energetic attributes in a juvenile coral reef fish. Oecologia 190: 689-702. doi: 10.1007/s00442-019-04430-z

Tachibana, A. , Nomura, H. , & Ishimaru, T. (2019). Impacts of long-term environmental variability on diapause phenology of coastal copepods in Tokyo Bay, Japan. Limnology and Oceanography, 64, S273-S283. doi: 10.1002/lno.11030

Takagi Y. (2002). Otolith formation and endolymph chemistry: a strong correlation between aragonite saturation state and pH in the endolymph of the trout otolith organ. Mar. Ecol. Prog. Ser. 231: 237-245.

Tateda Y., Tsumune D., Tsubono T., Aono T., Kanda J., & Ishimaru T. (2015). Radiocesium biokinetics in olive flounder inhabiting the Fukushima accident-affected Pacific coastal waters of eastern Japan. Journal of Environmental Radioactivity 147: 130-141. https://doi.org/10.1016/j.jenvrad.2015.05.025

Thrrold S.R., Jones C.M., & Campana S.E. (1997). Response of otolith microchemistry to environmental variations experienced by larval and juvenile Atlantic croaker (Micropogonias undulatus). Limnol. Oceanogr. 42: 102-111.

Tohse H. & Mugiya Y. (2004). Effects of acidity and a metabolic inhibitor on incorporation of calcium and inorganic carbon into endolymph and otoliths in salmon Oncorhynchus masou. Fisheries Science 70: 595-600.

Tohse H., Saruwatari K., Kogure T., Nagasawa H., & Takagi Y. (2009). Control of Polymorphism and Morphology of Calcium Carbonate Crystals by a Matrix Protein Aggregate in Fish Otoliths. Crystal Growth & Design 9: 4897-4901. doi: 10.1021/cg9006857

Tuset V.M., Azzurro E., & Lombarte A. (2012). Identification of Lessepsian fish species using the sagittal otolith. Scientia Marina 76: 289-299. doi: 10.3989/scimar.03420.18E

Tuset V.M., Farre M., Otero-Ferrer J.L., Vilar A., Morales-Nin B., & Lombarte A. (2016). Testing otolith morphology for measuring marine fish biodiversity. Marine and Freshwater Research 67: 1037-1048. doi: 10.1071/MF15052

Vaquer-Sunyer R. and Duarte C.M. (2008). Thresholds of hypoxia for marine biodiversity. P. Natl. Acad. Sci. USA 105: 15452-15457.

Walther B.D. & Limburg K.E. (2012). The use of otolith chemistry to characterize diadromous migrations. Journal of Fish Biology 81: 796-825. doi: 10.1111/j.1095-8649.2012.03371.x

Walther B.D. & Thorrold S.R. (2006). Water, not food, contributes the majority of strontium and barium deposited in the otoliths of a marine fish. Marine Ecology Progress Series 311: 125-130.

Wang Q., Cao R.W., Ning X.X., You L.P., Mu C.K., Wang C.L., Wei L., Cong M., Wu H.F., & Zhao J.M. (2016). Effects of ocean acidification on immune responses of the Pacific oyster Crassostrea gigas. Fish and Shellfish Immunology 49: 24-33. doi: 10.1016/j.fsi.2015.12.025

Wells B.K., Rieman B.E., Clayton J.L., & Horan D.L. (2003). Relationships between Water, Otolith, and Scale Chemistries of Westslope Cutthroat Trout from the Coeur d’Alene River, Idaho: The Potential Application of Hard-Part Chemistry to Describe Movements in Freshwater. American Fisheries Society 132: 409-424.

Xiao W. (2015). The hypoxia signaling pathway and hypoxic adaption in fishes. Science China Life Sciences 58: 148-155. doi: 10.1007/s11427-015-4801-z

Yamamoto M., Omi H., Yasue N., & Kasai A. (2020). Correlation of changes in seasonal distribution and catch of red bream Pagrus major with winter temperature in the eastern Seto Inland Sea, Japan (1972-2010). Fisheries Oceanography 29: 1-9. doi: 10.1111/fog.12432

Yamamoto-Kawai M., Kawamura N., Ono T., Kosugi N., Kubo A., Ishii M., & Kanda J. (2015). Calcium carbonate saturation and ocean acidification in Tokyo Bay, Japan. J. Oceanogr. 71: 427-439. doi: 10.1007/s10872-015-0302-8

Yamamoto-Kawai M., Ito S., Kurihara H., & Kanda J. (2021). Ocean acidification state in the highly eutrophic Tokyo Bay, Japan: controls on seasonal and interannual variability. Front. Mar. Sci. https://doi.org/10.3389/fmars.2021.642041

Zenitani H., Onishi Y., Kobayashi S., & Fujiwara T. (2009). Spawning season, spawning grounds, and egg production of red sea bream in Hiuchi-nada, Seto Inland Sea. Fisheries Science 75: 55-62. https://doi.org/10.1007/s12562-008-0005-9

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る