リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Effects of divalent-cation iron and manganese oxides on the luminescence of free lime and free magnesia」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Effects of divalent-cation iron and manganese oxides on the luminescence of free lime and free magnesia

Susumu Imashuku Hiroki Tsuneda Kazuaki Wagatsuma 東北大学 DOI:10.1016/j.saa.2019.117952

2020.03.15

概要

Identification of free lime (f-CaO) and free magnesia (f-MgO) is vital for the effective reuse of steelmaking slag in road construction because f-CaO and f-MgO can cause road expansion. In the present study, we present a method to rapidly identify f-CaO and f-MgO likely to cause road expansion by investigating CL spectra of CaO and MgO containing FeO and MnO because MnO and FeO are major components dissolved in f-CaO and f-MgO. The CL peaks related to Mn2+ (600 nm for CaO and 755 nm for MgO) showed the highest intensities. The intensity of the peak at 600 nm for CaO containing 10 mass% MnO was the lowest for f-CaO and was 2.5-times lower than that for f-CaO, whose luminescence was captured in 15 s. MgO with 5 mass% MnO and 20 mass% FeO was found to show the lowest intensity for f-MgO that is responsible for road expansion, and its CL intensity was 10-times lower than that of f-MgO, whose luminescence was captured in 2 s. Therefore, we can identify the f-CaO and f-MgO likely to cause road expansion by capturing CL colors of the peaks related to Mn2+ at the exposure time within 40 s. The method presented here will contribute to the effective reuse of steelmaking.

この論文で使われている画像

参考文献

[1] Y. Jiang, T.-C. Ling, C. Shi, S.-Y. Pan, Characteristics of steel slags and their use in cement and concrete—A review, Resour. Conserv. Recycl., 136 (2018) 187-197.

[2] S.-Y. Pan, R. Adhikari, Y.-H. Chen, P. Li, P.-C. Chiang, Integrated and innovative steel slag utilization for iron reclamation, green material production and CO2 fixation via accelerated carbonation, J. Clean Prod., 137 (2016) 617-631.

[3] İ. Yüksel, A review of steel slag usage in construction industry for sustainable development, Environ. Dev. Sustain., 19 (2016) 369-384.

[4] G. Wang, Y. Wang, Z. Gao, Use of steel slag as a granular material: volume expansion prediction and usability criteria, J. Hazard. Mater., 184 (2010) 555-560.

[5] C. Kambole, P. Paige-Green, W.K. Kupolati, J.M. Ndambuki, A.O. Adeboje, Basic oxygen furnace slag for road pavements: A review of material characteristics and performance for effective utilisation in southern Africa, Constr. Build. Mater., 148 (2017) 618-631.

[6] S. Chatterji, Mechanism of expansion of concrete due to the presence of dead-burnt CaO and MgO, Cem. Concr. Res., 25 (1995) 51-56.

[7] L.F. Amaral, I.R. Oliveira, P. Bonadia, R. Salomão, V.C. Pandolfelli, Chelants to inhibit magnesia (MgO) hydration, Ceram. Int., 37 (2011) 1537-1542.

[8] L.M. Juckes, The volume stability of modern steelmaking slags, Trans. Inst. Min. Metall., Sect. C, 112 (2003) 177-197.

[9] H. Tsuneda, S. Imashuku, K. Wagatsuma, Detection of free-lime in steelmaking sag by cathodoluminescence method, Tetsu To Hagane-J. Iron Steel Inst. Jpn., 105 (2019) 30-37.

[10] S. Imashuku, H. Tsuneda, K. Wagatsuma, Rapid and simple identification of free magnesia in steelmaking slag used for road construction using cathodoluminescence, Metall. Mater. Trans. B, (2019).

[11] H. Suito, T. Yokomaku, Y. Hayashida, Y. Takahashi, Effect of free lime on disintegration of LD slags, Tetsu To Hagane-J. Iron Steel Inst. Jpn., 63 (1977) 2316-2325.

[12] A. Niida, K. Okohira, A. Tanaka, T. Kai, Crystallization of free lime and magnesia from molten LD-converter slag, Tetsu To Hagane-J. Iron Steel Inst. Jpn., 69 (1983) 42-50.

[13] M. Gautier, J. Poirier, F. Bodénan, G. Franceschini, E. Véron, Basic oxygen furnace (BOF) slag cooling: Laboratory characteristics and prediction calculations, Int. J. Miner. Process., 123 (2013) 94-101.

[14] S. Imashuku, K. Ono, R. Shishido, S. Suzuki, K. Wagatsuma, Cathodoluminescence analysis for rapid identification of alumina and MgAl2O4 spinel inclusions in steels, Mater. Charact., 131 (2017) 210-216.

[15] S. Imashuku, K. Ono, K. Wagatsuma, X-Ray excited optical luminescence and portable electron probe microanalyzer-cathodoluminescence (EPMA-CL) analyzers for on-line and on- site analysis of nonmetallic inclusions in steel, Microsc. Microanal., 23 (2017) 1143-1149.

[16] S. Imashuku, K. Wagatsuma, Rapid identification of calcium aluminate inclusions in steels using cathodoluminescence analysis, Metall. Mater. Trans. B, 49 (2018) 2868-2874.

[17] S. Imashuku, K. Wagatsuma, Cathodoluminescence analysis of nonmetallic inclusions of nitrides in steel, Surf. Interface Anal., 51 (2019) 31-34.

[18] S. Imashuku, K. Wagatsuma, Non-destructive evaluation of alumina scale on heat-resistant steels using cathodoluminescence and X-ray-excited optical luminescence, Corros. Sci., 154 (2019) 226-230.

[19] S. Imashuku, K. Wagatsuma, Simple identification of Al2O3 and MgO·Al2O3 spinel inclusions in steel using X-ray-excited optical luminescence, X-Ray Spectrom., 48 (2019) 522- 526.

[20] S. Imashuku, K. Wagatsuma, Cathodoluminescence analysis of nonmetallic inclusions in steel deoxidized and desulfurized by rare-earth metals (La, Ce, Nd), Metall. Mater. Trans. B, (2019).

[21] R.E. Johnson, A. Muan, Phase equilibria in the system CaO-MgO-iron oxide at 1500°C, J. Am. Ceram. Soc., 48 (1965) 359-364.

[22] V.D. Eisenhüttenleute, Slag Atlas, 2nd ed., Verlag Stahleisen, Düsseldorf, 1995.

[23] B. Henderson, S.E. Stokowski, T.C. Ensign, Luminescence from F centers in calcium oxide, Phys. Rev., 183 (1969) 826-831.

[24] P.A. Cox, The Electronic Structure and Chemistry of Solids, in, Oxford University Press, Oxford, 1987, pp. 147.

[25] L. Feng, Z. Hao, X. Zhang, L. Zhang, G. Pan, Y. Luo, L. Zhang, H. Zhao, J. Zhang, Red emission generation through highly efficient energy transfer from Ce3+ to Mn2+ in CaO for warm white LEDs, Dalton Trans., 45 (2016) 1539-1545.

[26] A.S. Marfunin, Spectroscopy, Luminescence and Radiation Centers in Minerals, Springer- Verlag, Berlin, 1979.

[27] D. Habermann, R.D. Neuser, D.K. Richter, Quantitative high resolution spectral analysis of Mn2+ in sementary calcite, in: M. Pagel, V. Barbin, P. Blanc, D. Ohnenstetter (Eds.) Cathodoluminscence in Geosciences, Springer, Berlin, 2000, pp. 331-358.

[28] R. Inoue, H. Suito, Hydration of crystallized lime in BOF slags, ISIJ Int., 35 (1995) 272- 279.

[29] P. Wu, G. Eriksson, A.D. Pelton, Critical evaluation and optimization of the thermodynamic properties and phase diagrams of the CaO-FeO, CaO-MgO, CaO-MnO, FeO- MgO, FeO-MnO, and MgO-MnO systems, J. Am. Ceram. Soc., 76 (1993) 2065-2075.

[30] P. Wu, G. Eriksson, A.D. Pelton, M. Blander, Prediction of the thermodynamic properties and phase diagrams of silicate systems-evaluation of the FeO-MgO-SiO2 system, ISIJ Int., 33 (1993) 26-35.

[31] G.H. Rosenblatt, M.W. Rowe, G.P. Williams, R.T. Williams, Y. Chen, Luminescence of F and F+ centers in magnesium oxide, Phys. Rev. B, 39 (1989) 10309-10318.

[32] T.A. Vu, J. Götze, K. Burkhardt, J. Ulbricht, D. Habermann, Application of optical and spectral cathodoluminescence in the study of MgO refractories, Int. Ceram., 47 (1998) 164-167.

[33] M. Karakus, M.D. Crites, M.E. Schlesinger, Cathodoluminescence microscopy characterization of chrome-free refractories for copper smelting and converting furnaces, J. Microsc., 200 (2000) 50-58.

[34] C.M. MacRae, N.C. Wilson, Luminescence database I--minerals and materials, Microsc. Microanal., 14 (2008) 184-204.

[35] T. Goto, T.J. Ahrens, G.R. Rossman, Y. Syono, Absorption spectrum of shock-compressed Fe2+-bearing MgO and the radiative conductivity of the lower mantle, Phys. Earth Planet. Inter., 22 (1980) 272-276.

[36] R.G. Burns, Mineralogical Applications of Crystal Field Theory, second ed., Cambridge University Press, Cambridge, 1993.

[37] A.S. Marfunin, Physics of Minerals and Inorganic Materials, Springer-Verlag, Berlin, 1979.

[38] M. Gaft, R. Reisfeld, G. Panczer, Luminescence Spectroscopy of Minerals and Materials, Springer, 2005.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る