リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Effect of reheating and quenching on the cathodoluminescence intensity of free lime in steelmaking slag」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Effect of reheating and quenching on the cathodoluminescence intensity of free lime in steelmaking slag

Susumu Imashuku Makoto Nagasako Kazuaki Wagatsuma 東北大学 DOI:10.1017/S1431927621000374

2021.05.17

概要

Determining free lime content in steelmaking slag is crucial for its safe reuse in road construction. A simple method has been recently developed to rapidly derive this value via cathodoluminescence (CL) imaging of steelmaking slag, previously quenched from 1000 °C to room temperature, according to the illuminated areas corresponding to free lime (luminescence peak at 600 nm). This quenching is required to obtain intense CL from free lime, but the mechanism of such signal enhancement is still unknown. Therefore, the present study investigated the mechanism by comparing the microstructures, CLimages, and CL spectra of free lime in quenched and unquenched steelmaking slag. Large amounts of defects, including dislocations, were observed in the free lime emitting intense luminescence at 600 nm, whereas the samples without clear CLexhibited only a few defects. These results and previous studies suggest that the luminescence at 600 nm from free lime is enhanced by the CL originating from oxygen vacancies (380 nm); therefore, the enhancement of the intensity of the free lime CL peak could be attributed to the increase in the oxygen vacancies via quenching from 1000 °C to room temperature.

この論文で使われている画像

参考文献

Amaral, L.F., Oliveira, I.R., Bonadia, P., Salomão, R. & Pandolfelli, V.C. (2011). Chelants to inhibit magnesia (MgO) hydration. Ceram. Int. 37(5), 1537-1542.

Blasse, G. & Grabmaier, B.C. (1994). Luminescent materials. Berlin: Springer-Verlag.

Carrasco, J., Sousa, C., Illas, F., Sushko, P.V. & Shluger, A.L. (2006). Optical absorption and luminescence energies of F centers in CaO from ab initio embedded cluster calculations. J. Chem. Phys. 125(7), 074710.

Chatterji, S. (1995). Mechanism of expansion of concrete due to the presence of dead-burnt CaO and MgO. Cem. Concr. Res. 25(1), 51-56.

Feng, L., Hao, Z., Zhang, X., Zhang, L., Pan, G., Luo, Y., Zhang, L., Zhao, H. & Zhang, J. (2016). Red emission generation through highly efficient energy transfer from Ce3+ to Mn2+ in CaO for warm white LEDs. Dalton Trans. 45(4), 1539-1545.

Fisher, L.V. & Barron, A.R. (2019). The recycling and reuse of steelmaking slags — A review. Resour. Conserv. Recycl. 146, 244-255.

Gaft, M., Reisfeld, R. & Panczer, G. (2005). Luminescence Spectroscopy of Minerals and Materials. Berlin: Springer.

Gribkovskii, V.P. (1998). Theory of Luminescence. In Luminescence of Solids, Vij, D. R. (Ed.), pp. 1-43. New York: Plenum Press. Henderson, B., Stokowski, S.E. & Ensign, T.C. (1969). Luminescence from F centers in calcium oxide. Phys. Rev. 183(3), 826-831.

Imashuku, S., Hashimoto, W. & Wagatsuma, K. (2021). Nondestructive thickness measurement of silica scale using cathodoluminescence. Spectrochim. Acta, Part A 246, 119022.

Imashuku, S., Ono, K., Shishido, R., Suzuki, S. & Wagatsuma, K. (2017a). Cathodoluminescence analysis for rapid identification of alumina and MgAl2O4 spinel inclusions in steels. Mater. Charact. 131, 210-216.

Imashuku, S., Ono, K. & Wagatsuma, K. (2017b). Rapid phase mapping in heat-treated powder mixture of alumina and magnesia utilizing cathodoluminescence. X-Ray Spectrom. 46(2), 131-135.

Imashuku, S., Ono, K. & Wagatsuma, K. (2017c). X-Ray excited optical luminescence and portable electron probe microanalyzer- cathodoluminescence (EPMA-CL) analyzers for on-line and on-site analysis of nonmetallic inclusions in steel. Microsc. Microanal. 23(6), 1143-1149.

Imashuku, S., Tsuneda, H. & Wagatsuma, K. (2020a). Effects of divalent-cation iron and manganese oxides on the luminescence of free lime and free magnesia. Spectrochim. Acta, Part A 229, 117952.

Imashuku, S., Tsuneda, H. & Wagatsuma, K. (2020b). Rapid and simple identification of free magnesia in steelmaking slag used for road construction using cathodoluminescence. Metall. Mater. Trans. B 51, 28-34.

Imashuku, S. & Wagatsuma, K. (2018). Rapid identification of calcium aluminate inclusions in steels using cathodoluminescence analysis. Metall. Mater. Trans. B 49B(5), 2868-2874.

Imashuku, S. & Wagatsuma, K. (2019a). Cathodoluminescence analysis of nonmetallic inclusions of nitrides in steel. Surf. Interface Anal. 51(1), 31-34.

Imashuku, S. & Wagatsuma, K. (2019b). Non-destructive evaluation of alumina scale on heat-resistant steels using cathodoluminescence and X-ray-excited optical luminescence. Corros. Sci. 154, 226-230.

Imashuku, S. & Wagatsuma, K. (2019c). Simple identification of Al2O3 and MgO·Al2O3 spinel inclusions in steel using X-ray-excited optical luminescence. X-Ray Spectrom. 48(5), 522-526.

Imashuku, S. & Wagatsuma, K. (2020a). Determination of Area Fraction of Free Lime in Steelmaking Slag Using Cathodoluminescence and X-ray Excited Optical Luminescence. Metall. Mater. Trans. B 51, 2003-2011.

Imashuku, S. & Wagatsuma, K. (2020b). Cathodoluminescence Analysis for the Nondestructive Evaluation of Silica Scale on an Iron- Based Alloy. Oxid. Met. 93(1-2), 175-182.

Imashuku, S. & Wagatsuma, K. (2020c). Cathodoluminescence analysis of nonmetallic inclusions in steel deoxidized and desulfurized by rare-earth metals (La, Ce, Nd). Metall. Mater. Trans. B 51, 79-84.

Imashuku, S. & Wagatsuma, K. (2020d). Rapid identification of rare earth element bearing minerals in ores by cathodoluminescence method. Miner. Eng. 151, 106317.

Imashuku, S. & Wagatsuma, K. (2021). X-ray-excited optical luminescence imaging for on-site identification of xenotime. J. Geochem. Explor. 225, 106763.

Inoue, R. & Suito, H. (1995). Hydration of crystallized lime in BOF slags. ISIJ Int. 35(3), 272-279.

Javellana, M.P. & Jawed, I. (1982). Extraction of free lime in portland cement and clinker by ethylene glycol. Cem. Concr. Res. 12(3), 399-403.

Jiang, Y., Ling, T.-C., Shi, C. & Pan, S.-Y. (2018). Characteristics of steel slags and their use in cement and concrete—Areview. Resour. Conserv. Recycl. 136, 187-197.

Juckes, L.M. (2003). The volume stability of modern steelmaking slags. Trans. Inst. Min. Metall., Sect. C 112(3), 177-197.

Kambole, C., Paige-Green, P., Kupolati, W.K., Ndambuki, J.M. & Adeboje, A.O. (2017). Basic oxygen furnace slag for road pavements: A review of material characteristics and performance for effective utilisation in southern Africa. Constr. Build. Mater. 148, 618- 631.

Kato, M., Hari, T., Saito, S. & Shibukawa, M. (2014). Determination of Free Lime in Steelmaking Slags by Use of Ethylene Glycol Extraction/ICP-AES and Thermogravimetry. Tetsu To Hagane-J. Iron Steel Inst. Jpn. 100(3), 340-345.

MacPherson, D.R. & Forbrich, L.R. (1937). Determination of Uncombined Lime in Portland Cement: The Ethylene Glycol Method. Ind. Eng. Chem. Anal. Ed. 9(10), 451-453.

Marfunin, A.S. (1979). Spectroscopy, Luminescence and Radiation Centers in Minerals. Berlin: Springer-Verlag.

Naidu, T.S., Sheridan, C.M. & van Dyk, L.D. (2020). Basic oxygen furnace slag: Review of current and potential uses. Miner. Eng. 149.

Niida, A., Okohira, K., Tanaka, A. & Kai, T. (1983). Crystallization of free lime and magnesia from molten LD-converter slag. Tetsu To Hagane-J. Iron Steel Inst. Jpn. 69(1), 42-50.

Nippon Slag Association (2020). Chemical composition of iron and steel slag. Nippon Slag Association Web.

Pan, S.-Y., Adhikari, R., Chen, Y.-H., Li, P. & Chiang, P.-C. (2016). Integrated and innovative steel slag utilization for iron reclamation, green material production and CO2 fixation via accelerated carbonation. J. Clean Prod. 137, 617-631.

Panis, A. (1984). Utilisation des scories LD en technique routiere. Bull. Eng. Geol. Environ. 30(1), 449-451. Pogatshnik, G.J. (1994). A new interpretation of the “F-center” luminescence in CaO crystals. J. Lumin. 60-61, 535-539.

Stewart, D.I., Bray, A.W., Udoma, G., Hobson, A.J., Mayes, W.M., Rogerson, M. & Burke, I.T. (2018). Hydration of dicalcium silicate and diffusion through neo-formed calcium-silicate-hydrates at weathered surfaces control the long-term leaching behaviour of basic oxygen furnace (BOF) steelmaking slag. Environ Sci Pollut Res Int 25(10), 9861-9872.

Tsuneda, H., Imashuku, S. & Wagatsuma, K. (2019). Detection of free-lime in steelmaking sag by cathodoluminescence method. Tetsu To Hagane-J. Iron Steel Inst. Jpn. 105(5), 30-37.

Vaverka, J. & Sakurai, K. (2014). Quantitative Determination of Free Lime Amount in Steelmaking Slag by X-ray Diffraction. ISIJ Int. 54(6), 1334-1337.

Wang, G., Wang, Y. & Gao, Z. (2010). Use of steel slag as a granular material: volume expansion prediction and usability criteria. J. Hazard. Mater. 184(1-3), 555-560.

Wood, R.F. & Wilson, T.M. (1975). Electronic structure of the F-center in CaO and MgO. Solid State Commun. 16(5), 545-548.

Yüksel, İ. (2017). A review of steel slag usage in construction industry for sustainable development. Environ. Dev. Sustain. 19(2), 369-384.

Yacobi, B.G. & Holt, D.B. (1990). In Cathodoluminescence Microscopy of Inorganic Solids, pp. 151-155. New York: Plenum Press.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る