リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A New Polar Code Design Based on Reciprocal Channel Approximation」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A New Polar Code Design Based on Reciprocal Channel Approximation

Hideki Ochiai 20334576 Kosuke Ikeya Patrick Mitran 横浜国立大学

2022.12.07

概要

This paper revisits polar code design for a binary-input additive white Gaussian noise (BI-AWGN) channel when successive cancellation (SC) decoding is applied at the receiver. We focus on the so-called reciprocal channel approximation (RCA) , which is often adopted in the design of low-density parity-check (LDPC) codes. Implementation of RCA requires the computation of the mutual information of BPSK signaling as well as a corresponding function known as the reciprocal channel mapping , and thus we develop rigorous closed-form approximations of these that are easy to calculate numerically and also valid over a wide range of SNR. Through numerical evaluation we find that, compared to approaches based on the popular Gaussian approximation (GA) as well as the so-called improved GA (IGA), the proposed RCA approach offers better estimates of the bit error rate of polarized channels with no additional computational cost . As a result, polar codes designed by the proposed RCA can achieve further improvement in terms of block error rate (BLER) performance. The gain achieved by the new approach becomes significant as the codeword length increases.

参考文献

[1] E. Arıkan, “Channel polarization: A method for constructing capacityachieving codes for symmetric binary-input memoryless channels,” IEEE Trans. Inform. Theory, vol. 55, pp. 3051–3073, 2009. -2.0 -1.5 BLER 10-5 10-4 10-3 10-2 10-1 100 Estimation (IGA) Estimation (RCA) Simulation (IGA) Simulation (RCA) (a) 1.0 1.5 BLER 10-5 10-4 10-3 10-2 10-1 100 Estimation (IGA) Estimation (RCA) Simulation (IGA) Simulation (RCA) (b) Fig. 9. Simulated BLER of moderate to high-rate polar codes with N = 2n (n = 16 and 18) designed at specific SNR as well as the corresponding BLER estimates: (a) R = 0.5, (b) R = 0.75. The vertical lines indicate the corresponding design SNR.

[2] T. J. Richardson, M. A. Shokrollahi, and R. L. Urbanke, “Design of capacity-approaching irregular low-density parity-check codes,” IEEE Trans. Inform. Theory, vol. 47, pp. 619–637, Feb. 2001.

[3] T. J. Richardson and R. L. Urbanke, Modern Coding Theory. Cambridge; New York: Cambridge University Press, 2008.

[4] R. Mori and T. Tanaka, “Performance of polar codes with the construction using density evolution,” IEEE Commun. Lett., vol. 13, pp. 519–521, July 2009.

[5] I. Tal and A. Vardy, “How to construct polar codes,” IEEE Trans. Inform. Theory, vol. 59, pp. 6562–6582, Oct. 2013.

[6] S.-Y. Chung, T. Richardson, and R. Urbanke, “Analysis of sum-product decoding of low-density parity-check codes using a Gaussian approximation,” IEEE Trans. Inform. Theory, vol. 47, pp. 657–670, Feb. 2001.

[7] P. Trifonov, “Efficient design and decoding of polar codes,” IEEE Trans. Commun., vol. 60, pp. 3221–3227, Nov. 2012.

[8] H. Ochiai, P. Mitran, and H. V. Poor, “Capacity-approaching polar codes with long codewords and successive cancellation decoding based on improved Gaussian approximation,” IEEE Trans. Commun., vol. 69, pp. 31–43, Jan. 2021.

[9] I. Tal and A. Vardy, “List decoding of polar codes,” IEEE Trans. Inform. Theory, vol. 61, pp. 2213–2226, May 2015.

[10] E. Arıkan, “A performance comparison of polar codes and Reed-Muller codes,” IEEE Commun. Lett., vol. 12, pp. 447–449, June 2008.

[11] A. Elkelesh, M. Ebada, S. Cammerer, and S. ten Brink, “Decodertailored polar code design using the genetic algorithm,” IEEE Trans. Commun., vol. 67, pp. 4521–4534, July 2019.

[12] Y. Liao, S. A. Hashemi, J. M. Cioffi, and A. Goldsmith, “Construction of polar codes with reinforcement learning,” IEEE Trans. Commun., vol. 70, pp. 185–198, Jan. 2022.

[13] V. Bioglio, F. Gabry, I. Land, and J.-C. Belfiore, “Multi-kernel polar codes: Concept and design principles,” IEEE Trans. Commun., vol. 68, pp. 5350–5362, Sept. 2020.

[14] S.-Y. Chung, On the Construction of Some Capacity-Approaching Coding Schemes. PhD thesis, MIT, 2000.

[15] A. Ashikhmin, G. Kramer, and S. ten Brink, “Extrinsic information transfer functions: Model and erasure channel properties,” IEEE Trans. Inform. Theory, vol. 50, pp. 2657–2673, Nov. 2004.

[16] S. ten Brink and G. Kramer, “Design of repeat-accumulate codes for iterative detection and decoding,” IEEE Trans. Signal Process., vol. 51, pp. 2764–2772, Nov. 2003.

[17] S. ten Brink, G. Kramer, and A. Ashikhmin, “Design of low-density parity-check codes for modulation and detection,” IEEE Trans. Commun., vol. 52, pp. 670–678, Apr. 2004.

[18] E. Sharon, A. Ashikhmin, and S. Litsyn, “EXIT functions for binary input memoryless symmetric channels,” IEEE Trans. Commun., vol. 54, pp. 1207–1214, July 2006.

[19] D. Divsalar, S. Dolinar, C. R. Jones, and K. Andrews, “Capacityapproaching protograph codes,” IEEE J. Select. Areas Commun., vol. 27, pp. 876–888, Aug. 2009.

[20] B. P. Smith, A. Farhood, A. Hunt, F. R. Kschischang, and J. Lodge, “Staircase codes: FEC for 100 Gb/s OTN,” J. Lightw. Technol., vol. 30, pp. 110–117, Jan. 2012.

[21] H. Mahdavifar and A. Vardy, “Achieving the secrecy capacity of wiretap channels using polar codes,” IEEE Trans. Inform. Theory, vol. 57, pp. 6428–6443, Oct. 2011.

[22] K. Vakilinia, D. Divsalar, and R. D. Wesel, “RCA analysis of the polar codes and the use of feedback to aid polarization at short blocklengths,” in Proc. 2015 IEEE Int. Symp. Inform. Theory (ISIT), pp. 1292–1296, June 2015.

[23] D. Dosio, Polar Codes For Error Correction: Analysis and Decoding Algorithms. Laurea magistrale (master thesis), Universita di Bologna, ´ 2016.

[24] F. Brannstr ¨ om, L. Rasmussen, and A. Grant, “Convergence analysis ¨ and optimal scheduling for multiple concatenated codes,” IEEE Trans. Inform. Theory, vol. 51, pp. 3354–3364, Sept. 2005.

[25] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block and convolutional codes,” IEEE Trans. Inform. Theory, vol. 42, pp. 429– 445, Mar. 1996.

[26] D. Wu, Y. Li, and Y. Sun, “Construction and block error rate analysis of polar codes over AWGN channel based on Gaussian approximation,” IEEE Commun. Lett., vol. 18, pp. 1099–1102, July 2014.

[27] H. Vangala, E. Viterbo, and Y. Hong, “A comparative study of polar code constructions for the AWGN channel.” available on arXiv:1501.02473v1 [sc.IT], Jan. 2015.

[28] A. Lozano, A. Tulino, and S. Verdu, “Optimum power allocation for parallel Gaussian channels with arbitrary input distributions,” IEEE Trans. Inform. Theory, vol. 52, pp. 3033–3051, July 2006.

[29] R. M. Corless, G. H. Gonnet, D. E. G. Hare, D. J. Jeffrey, and D. E. Knuth, “On the Lambert W function,” Adv. Comput. Math., vol. 5, pp. 329–359, Dec. 1996.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る