リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「A multireference coupled-electron pair approximation combined with complete-active space perturbation theory in local pair-natural orbital framework」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

A multireference coupled-electron pair approximation combined with complete-active space perturbation theory in local pair-natural orbital framework

Saitow, Masaaki Yanai, Takeshi 名古屋大学

2020.03.21

概要

The Complete-Active Space Second-order Perturbation Theory (CASPT2) has been one of the most widely-used methods for reliably calculating electronic structures of multireference systems. Because of its lowest level treatment of dynamic correlation, it has a high computational feasibility; however, its accuracy in some cases falls short of needs. Here, as a simple yet higher-order alternative, we introduce a hybrid theory of the CASPT2 and a multireference variant of the Coupled-Electron Pair Approximation (CEPA), which is a class of high level correlation theory. A central feature of our theory (CEPT2) is to use the two underlying theories for describing different divisions of correlation components based on the full internal contraction framework. The external components, which usually give a major contribution to the dynamic correlation, are intensively described using the CEPA Ansatz, while the rests are treated at the CASPT2 level. Furthermore, to drastically reduce the computational demands, we have incorporated the pair-natural orbital (PNO) method into our multireference implementations. This development, thus, requires highly complex derivations and coding, while it has been largely facilitated with an automatic expression and code generation technique. To highlight the accuracy of the CEPT2 approach and to assess the errors caused by the PNO truncation, benchmark calculations are shown on small- to medium-size molecules, illustrating the high accuracy of the present CEPT2 model. By tightening the truncation thresholds, the PNO-CEPT2 energy converges toward the canonical counterpart and is more accurate than that of PNO-CASPT2 as long as the same truncation thresholds are used.

この論文で使われている画像

参考文献

F. Neese, Coord. Chem. Rev. 253, 526 (2009), theory and computing in contemporary coordination chemistry.

D. I. Lyakh, M. Musiał, V. F. Lotrich, and R. J. Bartlett, Chem. Rev. 112, 182

(2012).

P. G. Szalay, T. Müller, G. Gidofalvi, H. Lischka, and R. Shepard, Chem. Rev. 112,

108 (2012).

J. P. Malrieu, R. Caballol, C. J. Calzado, C. de Graaf, and N. Guihéry, Chem. Rev.

114, 429 (2014).

E. Neuscamman, T. Yanai, and G. K.-L. Chan, Int. Rev. Phys. Chem. 29, 231

(2010).

B. O. Roos, P. R. Taylor, and P. E. Siegbahn, Chem. Phys. 48, 157 (1980).

B. O. Roos, Adv. Chem. Phys. 69, 399 (1987).

K. Ruedenberg, L. M. Cheung, and S. T. Elbert, Int. J. Quantum Chem. 16, 1069

(1979).

K. Kowalski and P. Piecuch, J. Chem. Phys. 113, 18 (2000).

10

K. Kowalski and P. Piecuch, J. Chem. Phys. 113, 5644 (2000).

152, 114111-14

The Journal

of Chemical Physics

11

C. J. Cramer, M. Włoch, P. Piecuch, C. Puzzarini, and L. Gagliardi, J. Phys.

Chem. A 110, 1991 (2006).

12

J. J. Eriksen and J. Gauss, J. Chem. Theory Comput. 15, 4873 (2019).

13

Y. Qiu, T. M. Henderson, J. Zhao, and G. E. Scuseria, J. Chem. Phys. 147, 064111

(2017).

14

Y. Qiu, T. M. Henderson, J. Zhao, and G. E. Scuseria, J. Chem. Phys. 149, 164108

(2018).

15

J. A. Gomez, T. M. Henderson, and G. E. Scuseria, J. Chem. Phys. 150, 144108

(2019).

16

T. Tsuchimochi and S. Ten-no, J. Chem. Theory Comput. 12, 1741 (2016).

17

T. Tsuchimochi and S. L. Ten-no, J. Chem. Phys. 149, 044109 (2018).

18

E. Xu and S. L. Ten-no, J. Comput. Chem. 39, 875 (2018).

19

K. Andersson, P. A. Malmqvist, B. O. Roos, A. J. Sadlej, and K. Wolinski, J. Phys.

Chem. 94, 5483 (1990).

20

K. Andersson, P. Malmqvist, and B. O. Roos, J. Chem. Phys. 96, 1218 (1992).

21

M. Schreiber, M. R. Silva-Junior, S. P. A. Sauer, and W. Thiel, J. Chem. Phys.

128, 134110 (2008).

22

S. Vancoillie, H. Zhao, M. Rado´n, and K. Pierloot, J. Chem. Theory Comput. 6,

576 (2010).

23

Q. M. Phung and K. Pierloot, J. Chem. Theory Comput. 15, 3033 (2019).

24

P.-Å. Malmqvist, K. Pierloot, A. Rehaman, M. Shahi, C. J. Cramer, and

L. Gagliardi, J. Chem. Phys. 128, 204109 (2008).

25

Q. M. Phung and K. Pierloot, Chem. - Eur. J. 25, 12491 (2019).

26

B. O. Roos and K. Andersson, Chem. Phys. Lett. 245, 215 (1995).

27

N. Forsberg and P.-Å. Malmqvist, Chem. Phys. Lett. 274, 196 (1997).

28

C. Angeli, R. Cimiraglia, S. Evangelisti, T. Leininger, and J. P. Malrieu, J. Chem.

Phys. 114, 10252 (2001).

29

C. Angeli, R. Cimiraglia, and J. Malrieu, J. Chem. Phys. 117, 9138 (2002).

30

C. Angeli, M. Pastore, and R. Cimiraglia, Theor. Chem. Acc. 117, 743 (2006).

31

K. G. Dyall, J. Chem. Phys. 102, 4909 (1995).

32

C. Møller and M. S. Plesset, Phys. Rev. 46, 618 (1934).

33

F. Aquilante, T. K. Todorova, L. Gagliardi, T. B. Pedersen, and B. O. Roos,

J. Chem. Phys. 131, 034113 (2009).

34

J. Segarra-Martí, M. Garavelli, and F. Aquilante, J. Chem. Theory Comput. 11,

3772 (2015).

35

F. Aquilante, T. B. Pedersen, R. Lindh, B. O. Roos, A. Sánchez de Merás, and

H. Koch, J. Chem. Phys. 129, 024113 (2008).

36

J. Boström, F. Aquilante, T. B. Pedersen, and R. Lindh, J. Chem. Theory

Comput. 5, 1545 (2009).

37

F. Aquilante, P.-Å. Malmqvist, T. B. Pedersen, A. Ghosh, and B. O. Roos,

J. Chem. Theory Comput. 4, 694 (2008).

38

J. Boström, M. G. Delcey, F. Aquilante, L. Serrano-Andrés, T. B. Pedersen, and

R. Lindh, J. Chem. Theory Comput. 6, 747 (2010).

39

C. Song and T. J. Martínez, J. Chem. Phys. 149, 044108 (2018).

40

W. Gy˝offy, T. Shiozaki, G. Knizia, and H.-J. Werner, J. Chem. Phys. 138, 104104

(2013).

41

F. Menezes, D. Kats, and H.-J. Werner, J. Chem. Phys. 145, 124115 (2016).

42

D. Kats and H.-J. Werner, J. Chem. Phys. 150, 214107 (2019).

43

W. Kutzelnigg, J. Chem. Phys. 40, 3640 (1964).

44

R. Ahlrichs and W. Kutzelnigg, J. Chem. Phys. 48, 1819 (1968).

45

C. Edmiston and M. Krauss, J. Chem. Phys. 42, 1119 (1965).

46

C. Edmiston and M. Krauss, J. Chem. Phys. 45, 1833 (1966).

47

W. Meyer, Int. J. Quantum Chem. 5, 341 (1971).

48

W. Meyer, J. Chem. Phys. 58, 1017 (1973).

49

R. Ahlrichs and W. Kutzelnigg, Theor. Chim. Acta 10, 377 (1968).

50

P. R. Taylor, J. Chem. Phys. 74, 1256 (1981).

51

R. Fink and V. Staemmler, Theor. Chim. Acta 87, 129 (1993).

52

F. Neese, F. Wennmohs, and A. Hansen, J. Chem. Phys. 130, 114108 (2009).

53

F. Neese, A. Hansen, and D. G. Liakos, J. Chem. Phys. 131, 064103 (2009).

54

A. Hansen, D. G. Liakos, and F. Neese, J. Chem. Phys. 135, 214102 (2011).

55

D. G. Liakos, A. Hansen, and F. Neese, J. Chem. Theory Comput. 7, 76 (2011).

56

F. Neese, Wiley Interdiscip. Rev.: Comput. Mol. Sci. 8, e1327 (2018).

J. Chem. Phys. 152, 114111 (2020); doi: 10.1063/1.5142622

Published under license by AIP Publishing

ARTICLE

scitation.org/journal/jcp

57

C. Riplinger and F. Neese, J. Chem. Phys. 138, 034106 (2013).

C. Riplinger, B. Sandhoefer, A. Hansen, and F. Neese, J. Chem. Phys. 139,

134101 (2013).

59

P. Pinski, C. Riplinger, E. F. Valeev, and F. Neese, J. Chem. Phys. 143, 034108

(2015).

60

C. Riplinger, P. Pinski, U. Becker, E. F. Valeev, and F. Neese, J. Chem. Phys. 144,

024109 (2016).

61

M. Saitow, U. Becker, C. Riplinger, E. F. Valeev, and F. Neese, J. Chem. Phys.

146, 164105 (2017).

62

D. Datta, S. Kossmann, and F. Neese, J. Chem. Phys. 145, 114101 (2016).

63

O. Demel, J. Pittner, and F. Neese, J. Chem. Theory Comput. 11, 3104 (2015).

64

J. Brabec, J. Lang, M. Saitow, J. Pittner, F. Neese, and O. Demel, J. Chem. Theory

Comput. 14, 1370 (2018).

65

J. Lang, J. Brabec, M. Saitow, J. Pittner, F. Neese, and O. Demel, Phys. Chem.

Chem. Phys. 21, 5022 (2019).

66

Y. Guo, K. Sivalingam, E. F. Valeev, and F. Neese, J. Chem. Phys. 144, 094111

(2016).

67

H.-J. Werner, G. Knizia, C. Krause, M. Schwilk, and M. Dornbach, J. Chem.

Theory Comput. 11, 484 (2015).

68

M. Schwilk, D. Usvyat, and H.-J. Werner, J. Chem. Phys. 142, 121102 (2015).

69

M. Schwilk, Q. Ma, C. Köppl, and H.-J. Werner, J. Chem. Theory Comput. 13,

3650 (2017).

70

H. J. Werner, J. Chem. Phys. 145, 201101 (2016).

71

Q. Ma and H. J. Werner, J. Chem. Theory Comput. 14, 198–215 (2018).

72

C. Krause and H.-J. Werner, J. Chem. Theory Comput. 15, 987 (2018).

73

Q. Ma and H.-J. Werner, J. Chem. Theory Comput. 15, 1044 (2019).

74

G. Schmitz, B. Helmich, and C. Hättig, Mol. Phys. 111, 2463 (2013).

75

M. S. Frank, G. Schmitz, and C. Hättig, Mol. Phys. 115, 343 (2017).

76

G. Schmitz and C. Hättig, J. Chem. Phys. 145, 234107 (2016).

77

D. P. Tew and C. Hättig, Int. J. Quantum Chem. 113, 224 (2013).

78

G. Schmitz, C. Hättig, and D. P. Tew, Phys. Chem. Chem. Phys. 16, 22167

(2014).

79

D. P. Tew, B. Helmich, and C. Hättig, J. Chem. Phys. 135, 074107 (2011).

80

B. Helmich and C. Hättig, J. Chem. Phys. 135, 214106 (2011).

81

C. Hättig, D. P. Tew, and B. Helmich, J. Chem. Phys. 136, 204105 (2012).

82

B. Helmich and C. Hättig, J. Chem. Phys. 139, 084114 (2013).

83

B. O. Roos, P. Linse, P. E. Siegbahn, and M. R. Blomberg, Chem. Phys. 66, 197

(1982).

84

P. Pulay, Int. J. Quantum Chem. 111, 3273 (2011).

85

A. Banerjee and J. Simons, Int. J. Quantum Chem. 19, 207 (1981).

86

P. Celani, H. Stoll, H. Werner, and P. Knowles, Mol. Phys. 102, 2369 (2004).

87

R. F. Fink, Chem. Phys. Lett. 428, 461 (2006).

88

R. F. Fink, Chem. Phys. 356, 39 (2009), moving frontiers in quantum chemistry.

89

S. Sharma, G. Knizia, S. Guo, and A. Alavi, J. Chem. Theory Comput. 13, 488

(2017).

90

P. Celani and H.-J. Werner, J. Chem. Phys. 112, 5546 (2000).

91

K. R. Shamasundar, G. Knizia, and H.-J. Werner, J. Chem. Phys. 135, 054101

(2011).

92

H. Werner and E. Reinsch, J. Chem. Phys. 76, 3144 (1982).

93

H.-J. Werner and P. J. Knowles, J. Chem. Phys. 89, 5803 (1988).

94

H.-J. Werner, P. J. Knowles, G. Knizia, F. R. Manby, and M. Schütz, Wiley

Interdiscip. Rev.: Comput. Mol. Sci. 2, 242 (2012).

95

M. Saitow, Y. Kurashige, and T. Yanai, J. Chem. Phys. 139, 044118 (2013).

96

M. Saitow, Y. Kurashige, and T. Yanai, J. Chem. Theory Comput. 11, 5120

(2015).

97

M. K. MacLeod and T. Shiozaki, J. Chem. Phys. 142, 051103 (2015).

98

K. Sivalingam, M. Krupiˇcka, A. A. Auer, and F. Neese, J. Chem. Phys. 145,

054104 (2016).

99

J. Planelles, C. Valdemoro, and J. Karwowski, Phys. Rev. A 43, 3392 (1991).

100

J. Planelles, C. Valdemoro, and J. Karwowski, Phys. Rev. A 41, 2391 (1990).

101

W. Kutzelnigg, J. Chem. Phys. 82, 4166 (1985).

102

W. Kutzelnigg and D. Mukherjee, J. Chem. Phys. 107, 432 (1997).

58

152, 114111-15

The Journal

of Chemical Physics

103

J. Pipek and P. G. Mezey, J. Chem. Phys. 90, 4916 (1989).

O. Vahtras, J. Almlöf, and M. Feyereisen, Chem. Phys. Lett. 213, 514 (1993).

105

M. Saitow and F. Neese, J. Chem. Phys. 149, 034104 (2018).

106

Q. Ma and H.-J. Werner, J. Chem. Theory Comput. 11, 5291 (2015).

107

M. Saitow, FEMTO: An Integrated Toolset for the Automated Tensor Generation, Version 0.1.0, https://github.com/msaitow; accessed September 17, 2015.

108

Y. A. Aoto, A. Bargholz, D. Kats, H.-J. Werner, and A. Köhn, J. Chem. Theory

Comput. 15, 2291 (2019).

109

We calculated the size-consistency error for an Ne-dimer with an internuclear

distance of 1000 Å as E(Ne⋯Ne)–2E(Ne) using def2-SVP and def2-SVP/J auxiliary basis sets. The size-consistency errors caused by CASPT2 and CEPT2 models

are 4.03 × 10−5 kcal/mol and 2.04 × 10−5 kcal/mol, respectively.

110

A. G. Taube and R. J. Bartlett, J. Chem. Phys. 130, 144112 (2009).

111

C. L. Janssen and H. F. Schaefer, Theor. Chim. Acta 79, 1 (1991).

112

S. Hirata, J. Phys. Chem. A 107, 9887 (2003).

113

S. Hirata, J. Chem. Phys. 121, 51 (2004).

114

S. Hirata, Theor. Chem. Acc. 116, 2 (2006).

115

A. A. Auer, G. Baumgartner, D. E. Bernholdt, A. Bibireata, V. Choppella,

D. Cociorva, X. Gao, R. Harrison, S. Krishnamoorthy, S. Krishnan, C.-C. Lam,

Q. Lu, M. Nooijen, R. Pitzer, J. Ramanujam, P. Sadayappan, and A. Sibiryakov,

Mol. Phys. 104, 211 (2006).

116

A. Köhn, J. Chem. Phys. 130, 104104 (2009).

117

A. Köhn, J. Chem. Phys. 130, 131101 (2009).

118

M. Hanauer and A. Köhn, J. Chem. Phys. 131, 124118 (2009).

119

M. Hanauer and A. Köhn, J. Chem. Phys. 134, 204111 (2011).

120

J. A. Black and A. Köhn, J. Chem. Phys. 150, 194107 (2019).

121

T. Shiozaki, M. Kamiya, S. Hirata, and E. F. Valeev, J. Chem. Phys. 129, 071101

(2008).

122

T. Shiozaki, M. Kamiya, S. Hirata, and E. F. Valeev, Phys. Chem. Chem. Phys.

10, 3358 (2008).

123

T. Shiozaki, M. Kamiya, S. Hirata, and E. F. Valeev, J. Chem. Phys. 130, 054101

(2009).

124

T. Shiozaki, M. Kamiya, S. Hirata, and E. F. Valeev, J. Chem. Phys. 131, 044118

(2009).

125

M. Krupiˇcka, K. Sivalingam, L. Huntington, A. A. Auer, and F. Neese, J. Comput. Chem. 38, 1853 (2017).

126

L. M. J. Huntington, M. Krupiˇcka, F. Neese, and R. Izsák, J. Chem. Phys. 147,

174104 (2017).

104

J. Chem. Phys. 152, 114111 (2020); doi: 10.1063/1.5142622

Published under license by AIP Publishing

ARTICLE

scitation.org/journal/jcp

127

A. Sen, B. de Souza, L. M. J. Huntington, M. Krupiˇcka, F. Neese, and R. Izsák,

J. Chem. Phys. 149, 114108 (2018).

128

D. Datta, L. Kong, and M. Nooijen, J. Chem. Phys. 134, 214116 (2011).

129

L. Kong, K. R. Shamasundar, O. Demel, and M. Nooijen, J. Chem. Phys. 130,

114101 (2009).

130

L. Kong and E. F. Valeev, J. Chem. Phys. 135, 214105 (2011).

131

M. Hanrath and A. Engels-Putzka, J. Chem. Phys. 133, 064108 (2010).

132

A. Engels-Putzka and M. Hanrath, J. Chem. Phys. 134, 124106 (2011).

133

R. Gdanitz and R. Ahlrichs, Chem. Phys. Lett. 143, 413 (1988).

134

M. F. Rode and H.-J. Werner, Theor. Chem. Acc. 114, 309 (2005).

135

Y. Kurashige, J. Chalupský, T. N. Lan, and T. Yanai, J. Chem. Phys. 141, 174111

(2014).

136

M. Hanauer and A. Köhn, J. Chem. Phys. 137, 131103 (2012).

137

M. A. Watson and G. K.-L. Chan, J. Chem. Theory Comput. 8, 4013 (2012).

138

L. Serrano-Andrés, M. Merchán, I. Nebot-Gil, R. Lindh, and B. O. Roos, The J.

Chem. Phys. 98, 3151 (1993).

139

D. Zgid, D. Ghosh, E. Neuscamman, and G. K.-L. Chan, J. Chem. Phys. 130,

194107 (2009).

140

J. Finley, P.-Å. Malmqvist, B. O. Roos, and L. Serrano-Andrés, Chem. Phys.

Lett. 288, 299 (1998).

141

T. Shiozaki, W. Gy˝offy, P. Celani, and H.-J. Werner, J. Chem. Phys. 135, 081106

(2011).

142

T. Yanai, Y. Kurashige, E. Neuscamman, and G. K.-L. Chan, J. Chem. Phys.

132, 024105 (2010).

143

F. Weigend and R. Ahlrichs, Phys. Chem. Chem. Phys. 7, 3297 (2005).

144

F. Weigend, Phys. Chem. Chem. Phys. 8, 1057 (2006).

145

J. D. Watts, S. R. Gwaltney, and R. J. Bartlett, J. Chem. Phys. 105, 6979

(1996).

146

O. Lehtonen, D. Sundholm, R. Send, and M. P. Johansson, J. Chem. Phys. 131,

024301 (2009).

147

P. Szalay, A. Karpfen, and H. Lischka, Chem. Phys. 130, 219 (1989).

148

M. Dallos and H. Lischka, Theor. Chem. Acc. 112, 16 (2004).

149

J. P. Doering and R. McDiarmid, J. Chem. Phys. 73, 3617 (1980).

150

L. Serrano-Andrés, M. Merchán, M. Rubio, and B. O. Roos, Chem. Phys. Lett.

295, 195 (1998).

151

A. Aspuru-Guzik, O. E. Akramine, J. C. Grossman, and W. A. Lester, J. Chem.

Phys. 120, 3049 (2004).

152

M. Gouterman and G.-E. Khalil, J. Mol. Spectrosc. 53, 88 (1974).

152, 114111-16

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る