リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「血液細胞の起源とミエロイド細胞」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

血液細胞の起源とミエロイド細胞

長畑, 洋佑 増田, 喬子 河本, 宏 京都大学 DOI:10.11406/rinketsu.62.512

2021

概要

ヒトの血液中には様々な系列の細胞が存在している。造血幹細胞からそれぞれの系列への分化過程を知ることは,血液疾患の病態の理解やその治療法の開発研究において重要である。筆者らは,20年以上にわたって血液細胞の分化経路を探索し,各系列において,系列決定直前までミエロイド細胞分化能が残されているというミエロイド細胞の特殊性を見出し,「ミエロイド基本型モデル」という造血モデルを提唱した。ミエロイド細胞の特殊性は混合性白血病の特徴をよく反映しているだけでなく,血液の進化過程を考察する上でも非常に重要な手がかりを与えてくれている。モデルの提唱後,現在に至るまでに,巨核球や顆粒球の分化経路,無脊椎動物の血液細胞の知見などが集積し,ミエロイド細胞の特殊性が改めて確認されている。それらの文献を紹介しつつ血液細胞の分化過程と進化過程を辿り,「血液」の起源を考察する。
In human hematopoiesis, there exist various lineage cells such as neutrophil, lymphocyte, and red blood cells. Unveiling the pathway from stem cells to the various lineages helps us understanding the blood disorders and developing therapies for them. We have studied the developmental pathway of hematopoiesis for decades, and found that myeloid potential is retained just before determination to each lineage in various lineage progenitors. This uniqueness of myeloid cells may reflect character of mixed phenotype leukemia, and may further provide a very important clue in thinking the evolutional history of blood cells. Recent studies concerning differentiation pathway of megakaryocyte and granulocyte and findings on hemocytes of invertebrates have given strong support to the concept of the uniqueness of myeloid cells and have enabled us to propose insights on the evolutional history of blood. In this paper, we discuss about the origin of blood cells in the light of developmental pathway during ontogeny and phylogeny.

この論文で使われている画像

参考文献

Pappenheim, A. & Ferrata, A. Uber die verschiedenen lymphoid Zellformen des

normalen und pathologischen Blutes. (Klinikhardt, 1911).

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

10

Till, J. E. & Mc, C. E. A direct measurement of the radiation sensitivity of normal

mouse bone marrow cells. Radiation research 14, 213-222 (1961).

Lewis, J. P. & Trobaugh, F. E., Jr. Haematopoietic Stem Cells. Nature 204, 589590, doi:10.1038/204589a0 (1964).

Abramson, S., Miller, R. G. & Phillips, R. A. The identification in adult bone

marrow of pluripotent and restricted stem cells of the myeloid and lymphoid

systems. The Journal of experimental medicine 145, 1567-1579,

doi:10.1084/jem.145.6.1567 (1977).

Kawamoto, H., Ohmura, K. & Katsura, Y. Direct evidence for the commitment of

hematopoietic stem cells to T, B and myeloid lineages in murine fetal liver.

International immunology 9, 1011-1019 (1997).

Lu, M., Kawamoto, H., Katsube, Y., Ikawa, T. & Katsura, Y. The common

myelolymphoid progenitor: a key intermediate stage in hemopoiesis generating T

and

cells.

Journal

of

immunology

169,

3519-3525,

doi:10.4049/jimmunol.169.7.3519 (2002).

Kawamoto, H. A close developmental relationship between the lymphoid and

myeloid lineages. Trends Immunol 27, 169-175, doi:10.1016/j.it.2006.02.004

(2006).

Kawamoto, H., Ikawa, T., Masuda, K., Wada, H. & Katsura, Y. A map for lineage

restriction of progenitors during hematopoiesis: the essence of the myeloid-based

model. Immunol Rev 238, 23-36, doi:10.1111/j.1600-065X.2010.00959.x (2010).

Wada, H. et al. Adult T-cell progenitors retain myeloid potential. Nature 452, 768772, doi:10.1038/nature06839 (2008).

Kawamoto, H., Ikawa, T., Ohmura, K., Fujimoto, S. & Katsura, Y. T cell

progenitors emerge earlier than B cell progenitors in the murine fetal liver.

11

Immunity 12, 441-450 (2000).

Masuda, K. et al. Prethymic T-cell development defined by the expression of

12

paired immunoglobulin-like receptors. The EMBO journal 24, 4052-4060,

doi:10.1038/sj.emboj.7600878 (2005).

Perry, S. S. et al. L-selectin defines a bone marrow analog to the thymic early T-

13

14

lineage progenitor. Blood 103, 2990-2996, doi:10.1182/blood-2003-09-3030

(2004).

Chen, E. L. Y., Thompson, P. K. & Zuniga-Pflucker, J. C. RBPJ-dependent Notch

signaling initiates the T cell program in a subset of thymus-seeding progenitors.

Nature immunology 20, 1456-1468, doi:10.1038/s41590-019-0518-7 (2019).

Kondo, M., Weissman, I. L. & Akashi, K. Identification of clonogenic common

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

15

16

17

lymphoid progenitors in mouse bone marrow. Cell 91, 661-672 (1997).

Akashi, K., Traver, D., Miyamoto, T. & Weissman, I. L. A clonogenic common

myeloid progenitor that gives rise to all myeloid lineages. Nature 404, 193-197,

doi:10.1038/35004599 (2000).

Balciunaite, G., Ceredig, R., Massa, S. & Rolink, A. G. A B220+ CD117+ CD19hematopoietic progenitor with potent lymphoid and myeloid developmental

potential.

European

journal

of

immunology

35,

2019-2030,

doi:10.1002/eji.200526318 (2005).

Rumfelt, L. L., Zhou, Y., Rowley, B. M., Shinton, S. A. & Hardy, R. R. Lineage

specification and plasticity in CD19- early B cell precursors. The Journal of

18

experimental medicine 203, 675-687, doi:10.1084/jem.20052444 (2006).

Adolfsson, J. et al. Identification of Flt3+ lympho-myeloid stem cells lacking

erythro-megakaryocytic potential a revised road map for adult blood lineage

19

commitment. Cell 121, 295-306, doi:10.1016/j.cell.2005.02.013 (2005).

Doulatov, S. et al. Revised map of the human progenitor hierarchy shows the

origin of macrophages and dendritic cells in early lymphoid development. Nature

20

immunology 11, 585-593, doi:10.1038/ni.1889 (2010).

Paul, F. et al. Transcriptional Heterogeneity and Lineage Commitment in Myeloid

21

Progenitors. Cell 163, 1663-1677, doi:10.1016/j.cell.2015.11.013 (2015).

Tusi, B. K. et al. Population snapshots predict early haematopoietic and erythroid

22

hierarchies. Nature 555, 54-60, doi:10.1038/nature25741 (2018).

Rodriguez-Fraticelli, A. E. et al. Clonal analysis of lineage fate in native

23

haematopoiesis. Nature 553, 212-216, doi:10.1038/nature25168 (2018).

Weinreb, C., Rodriguez-Fraticelli, A., Camargo, F. D. & Klein, A. M. Lineage

tracing on transcriptional landscapes links state to fate during differentiation.

24

Science 367, doi:10.1126/science.aaw3381 (2020).

Biasco, L. et al. In Vivo Tracking of Human Hematopoiesis Reveals Patterns of

Clonal Dynamics during Early and Steady-State Reconstitution Phases. Cell stem

25

26

27

cell 19, 107-119, doi:10.1016/j.stem.2016.04.016 (2016).

Weinberg, O. K. & Arber, D. A. Mixed-phenotype acute leukemia: historical

overview

and

new

definition.

Leukemia

24,

1844-1851,

doi:10.1038/leu.2010.202 (2010).

Matutes, E. et al. Mixed-phenotype acute leukemia: clinical and laboratory

features and outcome in 100 patients defined according to the WHO 2008

classification. Blood 117, 3163-3171, doi:10.1182/blood-2010-10-314682 (2011).

Alexander, T. B. et al. The genetic basis and cell of origin of mixed phenotype

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

28

acute leukaemia. Nature 562, 373-379, doi:10.1038/s41586-018-0436-0 (2018).

Pancer, Z. et al. Somatic diversification of variable lymphocyte receptors in the

29

agnathan sea lamprey. Nature 430, 174-180, doi:10.1038/nature02740 (2004).

Hartenstein, V. Blood cells and blood cell development in the animal kingdom.

30

Annual review of cell and developmental biology 22, 677-712,

doi:10.1146/annurev.cellbio.22.010605.093317 (2006).

Kindred, J. E. Phagocytosis and clotting in the Pperivisceral fluid of Arbacia. The

31

Biological Bulletin 41, 9 (1921).

Rowley, A. F. The blood cells of the sea squirt, Ciona intestinalis: morphology,

differential counts, and in vitro phagocytic activity. Journal of Invertebrate

32

Pathology 27, 100 (1981).

Cima, F., Peronato, A. & Ballarin, L. The haemocytes of the colonial

aplousobranch ascidian Diplosoma listerianum: Structural, cytochemical and

33

functional analyses. Micron 102, 51-64, doi:10.1016/j.micron.2017.08.007 (2017).

Franchi, N. & Ballarin, L. Immunity in Protochordates: The Tunicate Perspective.

34

Frontiers in immunology 8, 674, doi:10.3389/fimmu.2017.00674 (2017).

Metschnikoff, E. Untersuchungen uber die intracellulare Verdauung bei

35

wirbellosen Thieren. Arbeit aus Zool Instituts zu Wien 5, 28 (1883).

Metschnikoff, E. Lecture of phagocytosis and immunity. The British Medical

Journal, 5 (1891).

36

Zachary, D. & Hoffmann, J. A. The haemocytes of Calliphora erythrocephala

37

(Meig.) (Diptera). Zeitschrift fur Zellforschung und mikroskopische Anatomie 141,

55-73, doi:10.1007/BF00307396 (1973).

Brehelin, M. Comparative study of structure and function of blood cells from two

Drosophila

species.

Cell

and

doi:10.1007/BF00215704 (1982).

38

39

40

41

tissue

research

221,

607-615,

Meister, M. & Lagueux, M. Drosophilablood cells. Cellular Microbiology 5, 573580, doi:10.1046/j.1462-5822.2003.00302.x (2003).

Williams, M. J. Drosophila Hemopoiesis and Cellular Immunity. The Journal of

Immunology 178, 4711-4716, doi:10.4049/jimmunol.178.8.4711 (2007).

Tame, A., Yoshida, T., Ohishi, K. & Maruyama, T. Phagocytic activities of

hemocytes from the deep-sea symbiotic mussels Bathymodiolus japonicus, B.

platifrons, and B. septemdierum. Fish & shellfish immunology 45, 146-156,

doi:10.1016/j.fsi.2015.03.020 (2015).

Castellanos-Martinez, S., Prado-Alvarez, M., Lobo-da-Cunha, A., Azevedo, C. &

Gestal, C. Morphologic, cytometric and functional characterization of the

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

common octopus (Octopus vulgaris) hemocytes. Developmental and comparative

42

immunology 44, 50-58, doi:10.1016/j.dci.2013.11.013 (2014).

Mukherjee, S., Ray, M. & Ray, S. Phagocytic efficiency and cytotoxic responses

of Indian freshwater sponge (Eunapius carteri) cells isolated by density gradient

43

centrifugation and flow cytometry: a morphofunctional analysis. Zoology 118, 818, doi:10.1016/j.zool.2014.07.002 (2015).

Spencker, T., Neumann, D., Strasser, A., Resch, K. & Martin, M. Lineage switch

of a mouse pre-B cell line (SPGM-1) to macrophage-like cells after incubation

with phorbol ester and calcium ionophore. Biochemical and biophysical research

44

communications 216, 540-548, doi:10.1006/bbrc.1995.2656 (1995).

Almeida, S. R. et al. Mouse B-1 cell-derived mononuclear phagocyte, a novel

cellular component of acute non-specific inflammatory exudate. International

45

immunology 13, 1193-1201, doi:10.1093/intimm/13.9.1193 (2001).

Popi, A. F. et al. Co-ordinated expression of lymphoid and myeloid specific

transcription factors during B-1b cell differentiation into mononuclear phagocytes

46

in vitro. Immunology 126, 114-122, doi:10.1111/j.1365-2567.2008.02883.x

(2009).

Li, J. et al. B lymphocytes from early vertebrates have potent phagocytic and

microbicidal abilities. Nature immunology 7, 1116-1124, doi:10.1038/ni1389

(2006).

47

Abos, B. et al. Identification of the First Teleost CD5 Molecule: Additional

Evidence on Phenotypical and Functional Similarities between Fish IgM(+) B

48

Cells and Mammalian B1 Cells. Journal of immunology 201, 465-480,

doi:10.4049/jimmunol.1701546 (2018).

Bell, J. J. & Bhandoola, A. The earliest thymic progenitors for T cells possess

49

myeloid lineage potential. Nature 452, 764-767, doi:10.1038/nature06840 (2008).

Masuda, K. et al. T Cell Lineage Determination Precedes the Initiation of

50

TCR Gene Rearrangement. The Journal of Immunology 179, 3699-3706,

doi:10.4049/jimmunol.179.6.3699 (2007).

Ikawa, T. et al. An essential developmental checkpoint for production of the T cell

51

lineage. Science 329, 93-96, doi:10.1126/science.1188995 (2010).

Huang, S. et al. Discovery of an Active RAG Transposon Illuminates the Origins

52

of V(D)J Recombination. Cell 166, 102-114, doi:10.1016/j.cell.2016.05.032

(2016).

Qin, Z. et al. Antibacterial activity of erythrocyte from grass carp

(Ctenopharyngodon idella) is associated with phagocytosis and reactive oxygen

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

53

species generation. Fish & shellfish immunology 92, 331-340,

doi:10.1016/j.fsi.2019.06.008 (2019).

Stokes, E. E. & Firkin, B. G. Studies of the peripheral blood of the Port Jackson

shark (Heterodontus portusjacksoni) with particular reference to the thrombocyte.

54

British journal of haematology 20, 427-435, doi:10.1111/j.13652141.1971.tb07054.x (1971).

Nagasawa, T. et al. Phagocytosis by Thrombocytes is a Conserved Innate Immune

55

Mechanism in Lower Vertebrates. Frontiers in immunology 5, 445,

doi:10.3389/fimmu.2014.00445 (2014).

Yamamoto, R. et al. Clonal analysis unveils self-renewing lineage-restricted

56

progenitors generated directly from hematopoietic stem cells. Cell 154, 1112-1126,

doi:10.1016/j.cell.2013.08.007 (2013).

Notta, F. et al. Distinct routes of lineage development reshape the human blood

57

58

hierarchy across ontogeny. Science 351, aab2116, doi:10.1126/science.aab2116

(2016).

Drissen, R. et al. Distinct myeloid progenitor-differentiation pathways identified

through single-cell RNA sequencing. Nature immunology, doi:10.1038/ni.3412

(2016).

Drissen, R., Thongjuea, S., Theilgaard-Monch, K. & Nerlov, C. Identification of

two distinct pathways of human myelopoiesis. Science immunology 4,

doi:10.1126/sciimmunol.aau7148 (2019).

Figure Legend

Fig. 1 Classical model and Myeloid-based model of hematopoiesis

In classical model, HSC differentiate into CMP and CLP. On the other hand, in myeloidbased model, HSC differentiate into myelo-lymphoid progenitor (MLP) having no

erythroid potential. MLP differentiate into M-T progenitor and M-B progenitor, and

proposing that CLP stage does not exist.

Fig. 2 Lineage clustering by barcoding

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

cited from Fig 4F of Weinreb et al. Science 367, eaaw3381 (2020)

Fig. 3 Myeloid-based model and mixed phenotype leukemia

There exist various types of leukemia intermediate exhibiting T-myeloid, B-myeloid, Ermyeloid, and Eo-myeloid phenotype. The presence of these mixed types is compatible

with myeloid based model.

Fig. 4 Myeloid lineage has been conserved among metazoan

Invertebrates lack erythroid, T, and B lineage, but myeloid cells has been conserved as

phagocytes even in sponge.

Ph, phagocyte; Gr, granulocyte; Thr, thrombocyte; Er, erythrocyte; T, T-cell; B, B-cell

Fig. 5 Comparison of B cell in bony fish and mammal

B cell of bony fish resembles B-1 cell of mammal in terms of absence of class switch

recombination and potential of phagocytosis.

*macrophages differentiated from B-1 cells have phagocytic activity

Fig. 6 Myeloid potential is retained after loss of B-cell potential in T-cell differentiation

pathway

Fig. 7 Hypothesis of evolution of blood cells

Most ancient ancestor of animal like sponge may have acquired phagocyte. Next, ancestor

of bilateria is thought to have acquired granulocyte. In ancestor of vertebrate, T cell and

B cell are thought to have evolved from branch with macrophage/neutrophil and while

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

erythrocyte

and

megakaryocyte

from

branch

of

granulocyte

representing

eosinophil/basophil. It is possible that megakaryocyte is also originated from the stage

earlier than segregation towards Deuterostomia and Protostomia, since some animals in either

branch carry hemocytes with hemostatic activity.

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Fig 1

B. Myeloid-based model

Classical model

◎今

(CLP)

Common

lymphoid

progenitors

ME

METB

(MEP)

TB

(CMEP)

METB

②今

ME

Myelo-erythroid

progenitors

00

Common

myelo-erythroid

progenitors

゜令

A.

MT

MTB

(MLP)

Myelo-lymphoid

progenitors

MB

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Fig 2

lcouplin

(obser

ed/expe ed)

0.

31

~2

li:lJ)lN

︱18J1

︱1aJ9

︱18JJ!l!JPUacJ

a}k8UOl'J

晨 0セ~nN

豆dos~a

s﹂Ol!U830Jd

呈8主を

or

hr

Neut

De

dr

cc

Bc

NKce

Tce

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Fig 3

T cell

T ALL

M-T MPAL

ETP leukemia

B ALL

AML

AML M4Eo

eosinophil

B cell

M-B MPAL

AML M6

erythrocyte

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

. .

..

..

...

Fig 4

Vertebrate

Chordate

Deuterostomia

Mammal (human, mouse)

Aves (bird)

Reptilia (crocodile, snake)

Amphibia (frog)

Osteichthyes (fish)

Chondrichthyes (shark)

Agnatha (lamprey)

Urochordate (tunicate)

Echinoderm (star fish, sea urchin)

Protostomia

Bilateria

Metazoa

Ph

Arthropod (onsect, spider, shrimp)

Nematoda (roundworm)

Annelida (earthworm)

Mollusca (octopus, shell)

Sponge

Gr

Thr

Er

..

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Fig 5

recombination

Ig class

Class switch

Phagocytosis

B cell of

bony fish

IgM, IgD

B-1 cell of

mammal

IgM, IgD

〇*

B-2 cell of

mammal

IgM, IgD,

IgG, IgE, IgA

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Fig 6

Er

BM

HSC

(M-E-T-B)

LMPP

(M-T-B)

thymus

DN1/2 cell

(M-T)

~ · ◎-◎

~·~

I↓ ↓ T

◎ ~~

B cell myeloid cell myeloid cell

DN3-DP cell SP T cell peripheral T cell

(T)

(T)

(T)

TCR V-D-J

recombination

T-lineage determination

A Self-archived copy in

Kyoto University Research Information Repository

https://repository.kulib.kyoto-u.ac.jp

Chordate

Deuterostomia

Bilateria

fish

sponge

◎ 噛 @

Ancestor of bilateria

thrombocyte

Ancestor of metazoa

phagocyte

hemoblast

granulocyte

macrophage

HSC

fly

erythrocyte

Protostomia

megakaryocyte /

thrombocyte

sea star

Ancestor of vertebrate

sea s quirt

⑱:

Vertebrate

亀一

9*人“

Metazoa

Fig 7

eosinophil / basophil

neutrophil

macrophage

B cell

macrophage

T cell

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る