リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Subtyping emphysematous COPD by respiratory volume change distributions on CT」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Subtyping emphysematous COPD by respiratory volume change distributions on CT

Shima, Hiroshi 京都大学 DOI:10.14989/doctor.k24967

2023.11.24

概要

Background There is considerable heterogeneity
among patients with emphysematous chronic obstructive
pulmonary disease (COPD). We hypothesised that in
addition to emphysema severity, ventilation distribution
in emphysematous regions would be associated with
1
Department of Respiratory
clinical-­physiological impairments in these patients.
Medicine, Graduate School of
Objective To evaluate whether the discordance
Medicine, Kyoto University,
between respiratory volume change distributions (from
Kyoto, Japan
2
Department of Respiratory
expiration to inspiration) in emphysematous and non-­
Medicine, Faculty of Medicine,
emphysematous regions affects COPD outcomes using
Hokkaido University, Sapporo,
two cohorts.
Japan
3
Methods Emphysema was quantified using a low
Institute of Mathematics for
Industry, Kyushu University,
attenuation volume percentage on inspiratory CT
Fukuoka, Japan
(iLAV%). Local respiratory volume changes were
4
Terada Clinic, Respiratory
calculated using non-­rigidly registered expiratory/
Medicine and General Practice,
inspiratory CT. The Ventilation Discordance Index (VDI)
Himeji, Japan
5
represented the log-­transformed Wasserstein distance
Department of Diagnostic
Imaging and Nuclear Medicine,
quantifying discordance between respiratory volume
Graduate School of Medicine,
change distributions in emphysematous and non-­
Kyoto University, Kyoto, Japan
emphysematous regions.
6
Hokkaido Medical Research
Results Patients with COPD in the first cohort (n=221)
Institute for Respiratory
Diseases, Sapporo, Japan
were classified into minimal emphysema (iLAV% <10%;
n=113) and established emphysema with high VDI and
Correspondence to
low VDI groups (n=46 and 62, respectively). Forced
Dr Naoya Tanabe, Department of expiratory volume in 1 s (FEV ) was lower in the low
1
Respiratory Medicine, Graduate
VDI group than in the other groups, with no difference
School of Medicine, Kyoto
between the high VDI and minimal emphysema
University, Kyoto, Japan;
​ntana@​kuhp.k​ yoto-​u.​ac.​jp
groups. Higher iLAV%, more severe airway disease and
hyperventilated emphysematous regions in the upper-­
Received 28 September 2021
middle lobes were independently associated with lower
Accepted 28 May 2022
VDI. The second cohort analyses (n=93) confirmed these
findings and showed greater annual FEV1 decline and
higher mortality in the low VDI group than in the high
VDI group independent of iLAV% and airway disease on
CT.
Conclusion Lower VDI is associated with severe
airflow limitation and higher mortality independent of
emphysema severity and airway morphological changes
in patients with emphysematous COPD. ...

この論文で使われている画像

参考文献

Tanabe N, Shimizu K, Terada K, et al. Central airway and peripheral lung

structures in airway disease dominant COPD. ERJ Open Res 2021;:00672–2020.

doi:10.1183/23120541.00672-2020

2020 Gold Reports - Global Initiative for Chronic Obstructive Lung Disease GOLD. https://goldcopd.org/gold-reports/ (accessed 1 Feb 2021).

Suzuki M, Makita H, Konno S, et al. Asthma-like Features and Clinical Course

of Chronic Obstructive Pulmonary Disease. An Analysis from the Hokkaido

COPD Cohort Study. Am J Respir Crit Care Med 2016;194:1358–65.

doi:10.1164/rccm.201602-0353OC

Suzuki M, Makita H, Konno S, et al. Annual change in FEV1 in elderly 10-year

survivors with established chronic obstructive pulmonary disease. Sci Rep

2019;9:2073. doi:10.1038/s41598-019-38659-8

Shimizu K, Tanabe N, Tho N Van, et al. Per cent low attenuation volume and

fractal dimension of low attenuation clusters on CT predict different long-term

outcomes in COPD. Thorax 2020;75:116–22. doi:10.1136/thoraxjnl-2019213525

Makita H, Suzuki M, Konno S, et al. Unique Mortality Profile in Japanese

Patients with COPD: An Analysis from the Hokkaido COPD Cohort Study. Int J

Chron Obstruct Pulmon Dis 2020;15:2081–90. doi:10.2147/COPD.S264437

Suzuki M, Makita H, Ito YM, et al. Clinical features and determinants of COPD

exacerbation in the Hokkaido COPD cohort study. Eur Respir J 2014;43:1289–

97. doi:10.1183/09031936.00110213

Nishimura M, Makita H, Nagai K, et al. Annual change in pulmonary function

and clinical phenotype in chronic obstructive pulmonary disease. Am J Respir

Crit Care Med 2012;185:44–52. doi:10.1164/rccm.201106-0992OC

Kirby M, Tanabe N, Tan WC, et al. Total Airway Count on Computed

Tomography and the Risk of Chronic Obstructive Pulmonary Disease

Progression. Findings from a Population-based Study. Am J Respir Crit Care

Med 2018;197:56–65. doi:10.1164/rccm.201704-0692OC

10

Han MK, Tayob N, Murray S, et al. Association between Emphysema and

Chronic Obstructive Pulmonary Disease Outcomes in the COPDGene and

SPIROMICS Cohorts: A Post Hoc Analysis of Two Clinical Trials. Am J Respir

Crit Care Med 2018;198:265–7. doi:10.1164/rccm.201801-0051LE

11

Hersh CP, Washko GR, Estépar RSJ, et al. Paired inspiratory-expiratory chest

CT scans to assess for small airways disease in COPD. Respir Res 2013;14:42.

doi:10.1186/1465-9921-14-42

12

Schroeder JD, McKenzie AS, Zach JA, et al. Relationships between airflow

obstruction and quantitative CT measurements of emphysema, air trapping, and

airways in subjects with and without chronic obstructive pulmonary disease. AJR

Am J Roentgenol 2013;201:W460-70. doi:10.2214/AJR.12.10102

13

Shima H, Tanabe N, Sato S, et al. Lobar distribution of non-emphysematous gas

trapping and lung hyperinflation in chronic obstructive pulmonary disease.

Respir Investig 2020;58:246–54. doi:10.1016/j.resinv.2020.01.001

14

Boueiz A, Chang Y, Cho MH, et al. Lobar Emphysema Distribution Is

Associated With 5-Year Radiological Disease Progression. Chest 2018;153:65–

76. doi:10.1016/j.chest.2017.09.022

Shima H, et al. Thorax 2022;0:1–10. doi: 10.1136/thoraxjnl-2021-218288

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance

placed on this supplemental material which has been supplied by the author(s)

Supplemental material

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

Thorax

Lynch DA, Austin JHM, Hogg JC, et al. CT-Definable Subtypes of Chronic

Obstructive Pulmonary Disease: A Statement of the Fleischner Society.

Radiology 2015;277:192–205. doi:10.1148/radiol.2015141579

Oguma T, Hirai T, Niimi A, et al. Limitations of airway dimension measurement

on images obtained using multi-detector row computed tomography. PLoS One

2013;8:e76381. doi:10.1371/journal.pone.0076381

Tanabe N, Muro S, Oguma T, et al. Computed tomography assessment of

pharmacological lung volume reduction induced by bronchodilators in COPD.

COPD 2012;9:401–8. doi:10.3109/15412555.2012.674986

Dunican EM, Elicker BM, Gierada DS, et al. Mucus plugs in patients with

asthma linked to eosinophilia and airflow obstruction. J Clin Invest

2018;128:997–1009. doi:10.1172/JCI95693

Dunican EM, Elicker BM, Henry T, et al. Mucus Plugs and Emphysema in the

Pathophysiology of Airflow Obstruction and Hypoxemia in Smokers. Am J

Respir Crit Care Med 2020;:rccm.202006-2248OC. doi:10.1164/rccm.2020062248OC

Galbán CJ, Han MK, Boes JL, et al. Computed tomography-based biomarker

provides unique signature for diagnosis of COPD phenotypes and disease

progression. Nat Med 2012;18:1711–5. doi:10.1038/nm.2971

Amelon R, Cao K, Ding K, et al. Three-dimensional characterization of regional

lung deformation. J Biomech 2011;44:2489–95.

doi:10.1016/j.jbiomech.2011.06.009

Gary Doran. PyEMD: Earth Mover’s Distance for Python.

2014.https://github.com/garydoranjr/pyemd (accessed 5 Feb 2021).

Kolouri S, Park S, Thorpe M, et al. Optimal Mass Transport: Signal processing

and machine-learning applications. IEEE Signal Process Mag 2017;34:43–59.

doi:10.1109/MSP.2017.2695801

Kubota M, Kobayashi H, Quanjer PH, et al. Reference values for spirometry,

including vital capacity, in Japanese adults calculated with the LMS method and

compared with previous values. Respir Investig 2014;52:242–50.

doi:10.1016/j.resinv.2014.03.003

Macintyre N, Crapo RO, Viegi G, et al. Standardisation of the single-breath

determination of carbon monoxide uptake in the lung. Eur Respir J 2005;26:720–

35. doi:10.1183/09031936.05.00034905

Stanojevic S, Graham BL, Cooper BG, et al. Official ERS technical standards:

Global Lung Function Initiative reference values for the carbon monoxide

transfer factor for Caucasians. Eur Respir J 2017;50:1700010.

doi:10.1183/13993003.00010-2017

Stocks J, Quanjer PH. Reference values for residual volume, functional residual

capacity and total lung capacity. ATS Workshop on Lung Volume

Measurements. Official Statement of The European Respiratory Society. Eur

Respir J 1995;8:492–506. doi:10.1183/09031936.95.08030492

Jones PW, Harding G, Berry P, et al. Development and first validation of the

COPD Assessment Test. Eur Respir J 2009;34:648–54.

doi:10.1183/09031936.00102509

Tsuda T, Suematsu R, Kamohara K, et al. Development of the Japanese version

of the COPD Assessment Test. Respir Investig 2012;50:34–9.

Shima H, et al. Thorax 2022;0:1–10. doi: 10.1136/thoraxjnl-2021-218288

BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance

placed on this supplemental material which has been supplied by the author(s)

Supplemental material

30

31

32

33

Thorax

doi:10.1016/j.resinv.2012.05.003

Quanjer PH, Pretto JJ, Brazzale DJ, et al. Grading the severity of airways

obstruction: new wine in new bottles. Eur Respir J 2014;43:505–12.

doi:10.1183/09031936.00086313

Moll M, Qiao D, Regan EA, et al. Machine Learning and Prediction of All-Cause

Mortality in COPD. Chest 2020;158:952–64. doi:10.1016/j.chest.2020.02.079

Textor J, van der Zander B, Gilthorpe MS, et al. Robust causal inference using

directed acyclic graphs: the R package ‘dagitty’. Int J Epidemiol 2016;45:1887–

94. doi:10.1093/ije/dyw341

Bhatt SP, Soler X, Wang X, et al. Association between Functional Small Airway

Disease and FEV1 Decline in Chronic Obstructive Pulmonary Disease. Am J

Respir Crit Care Med 2016;194:178–84. doi:10.1164/rccm.201511-2219OC

Shima H, et al. Thorax 2022;0:1–10. doi: 10.1136/thoraxjnl-2021-218288

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る