リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Antitumor effect of regorafenib on microRNA expression in hepatocellular carcinoma cell lines」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Antitumor effect of regorafenib on microRNA expression in hepatocellular carcinoma cell lines

琢磨 慧 香川大学 DOI:10.3390/ijms23031667

2022.06.29

概要

Hepatocellular carcinoma (HCC) is the most common primary malignancy of the liver and is one of the leading causes of cancer-related deaths worldwide. Regorafenib, a multi-kinase inhibitor, is used as a second-line treatment for advanced HCC. Here, we aimed to investigate the mechanism of the antitumor effect of regorafenib on HCC and evaluate altered microRNA (miRNA) expression. Cell proliferation was examined in six HCC cell lines (HuH-7, HepG2, HLF, PLC/PRF/5, Hep3B, and Li-7) using the Cell Counting Kit-8 assay. Xenografted mouse models were used to assess the effects of regorafenib in vivo. Cell cycle analysis, western blotting analysis, and miRNA expression analysis were performed to identify the antitumor inhibitory potential of regorafenib on HCC cells. Regorafenib suppressed proliferation in HuH-7 cell and induced G0/G1 cell cycle arrest and cyclin D1 downregulation in regorafenib-sensitive cells. During miRNA analysis, miRNA molecules associated with the antitumor effect of regorafenib were found. Regorafenib suppresses cell proliferation and tumor growth in HCC by decreasing cyclin D1 via alterations in intracellular and exosomal miRNAs in HCC.

参考文献

Cancer J. Clin. 2015, 65, 87-108.

2.

Torre, L.A.; Bray, F.; Siegel, R.L.; Ferlay, J.; Lortet-Tieulent, J.; Jemal, A. Global cancer statistics, 2012. CA

[CrossRef]

Forner, A.; Reig, M.; Bruix, J. Hepatocellular carcinoma. Lancet 2018, 391, 1301-1314. [CrossRef]

3.

4.

Forner, A.; Llovet, J.M.; Bruix, J. Hepatocellular carcinoma. Lancet 2012, ~79, 1245-1255. [CrossRef]

Altekruse, S.F.; Henley, S.J.; Cucinelli, J.E.; McGlynn, K.A. Changing Hepatocellular Carcinoma Incidence and Liver Cancer

5.

Mortality Rates in the United States. Am. J. Gastroenterol. 2014, 109, 542-553. [CrossRef]

Tovoli, F.; Granite, A.; de Lorenzo, S.; Bolondi, L. Regora/enib for the treatment of hepatocellular carcinoma. Drugs Today 2018, 54, 5-13.

[CrossRef]

1.

Int. f. Mol. Sci. 2022, 23, 1667

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

14 of 15

Bruix, J.; Qin, S.; Merle, P.; Granito, A.; Huang, Y.-H.; Bodoky, G.; Pracht, M.; Yokosuka, O.; Rosmorduc, O.; Breder, V.; et al.

Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): A randomised,

double-blind, placebo-controlled, phase 3 trial. umcet 2017, 389, 5~6. [CrossRef]

Rimassa, L.; Pressiani, T.; Personeni, N.; Santoro, A. Regorafenib for the treatment of unresectable hepatocellular carcinoma.

Expert Rev. Anticancer Titer. 2017, 17, 567-576. [CrossRef] [PubMed]

Llovet, J.M.; Montal, R.; Sia, D.; Finn, R.S. Molecular therapies and precision medicine for hepatocellular carcinoma. Nat. Rev.

Clin. Oneal. 2018, 15, 599-616. [CrossRef]

Wilhelm, S.M.; Dumas, J.; Adnane, L.; Lynch, M.; Carter, C.A.; Schutz, G.; Thierauch, K.-H.; Zopf, D. Regorafenib (BAY 73-4506):

A new oral multikinase inhibitor of angiogenic, stromal and oncogenic receptor tyrosine kinases with potent preclinical anti.tumor

activity. Int. J. Cancer 2011, 129, 245-255. [CrossRef] [PubMed]

Abou-Elkacem, L.; Ams, S.; Brix, G.; Gremse, F.; Zapf, D.; Kiessling, F.; Lederle, W. Regorafenib Inhibits Growth, Angiogenesis,

and Metastasis in a Highly Aggressive, Orthotopic Colon Cancer Model. Mo/. Cancer Titer. 2013, 12, 1322-1331. [CrossRef]

Grothey, A.; van Cutsem, E.; Sobrero, A.; Siena, S.; Falcone, A.; Ychou, M.; Humblet, Y.; Bouche, O.; Mineur, L.; Barone, C.; et al.

Regorafenib monotherapy for previously treated metastatic colorectal cancer (CORRECT): An international, multicentre, randomised,

placebo-controlled, phase 3 trial. Lancet 2013, 381, 30:h312. [CrossRef]

Demetri, G.D.; Reichardt, P.; Kang, Y.-K.; Blay, J.-Y.; Rutkowski, P.; Gelderblom, H.; Hohenberger, P.; Leahy, M.; von Mehren,

M.; Joensuu, H.; et al. Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib

and sunitinib (GRID): An international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet 2013, 381, 295--302.

[CrossRef]

Hu, X.; Wu, L.-W.; Zhang, Z.-Y.; Chen, M.-L.; Li, Y.-L.; Zhang, C. The anti-tumor effect of regorafenib in lung squamous cell

carcinoma in vitro. Biochem. Biophys. Res. Commun. 2018, 503, 1123-1129. [CrossRef]

Chiang, C.H.; Chung, J.C.; Hsu, F.T. Regorefenib induces extrinsic/intrinsic apoptosis and inhibits MAPK/NF-KB-modulated

tumor progression in bladder cancer In Vitro and In Vivo. Environ. Toxicol. 2019, 34, 679-688. [CrossRef] [PubMed]

Pan, P.-J.; Liu, Y.-C.; Hsu, F.-T. Protein Kinase B and Extracellular Signal-Regulated Kinase Inactivation is Associated with

Regorafenib-Induced Inhibition of Osteosarcoma Progression In Vitro and In Vivo. J. ·cun. Med. 2019, 8, 900. [CrossRef]

Lai, S.C.; Su, Y.T.; Chi, C.C.; Kuo, Y.C.; Lee, K.F.; Wu, Y.C.; Lan, P.C.; Yang, M.H.; Chang, T.S.; Huang, Y.-H. DNMT3b/OCT4

expression confers sorafenib resistance and poor prognosis of hepatocellular carcinoma through IL-6/STAT3 regulation. Exp. Clin.

Cancer Res. 2019, 38,474. [CrossRef]

Murakami, S.; Ninomiya, W.; Sakamoto, E.; Shibata, T.; Akiyama, H.; Tashiro, F. SRY and OCT4 Are Required for the Acquisition

of Cancer Stem Cell-Like Properties and Are Potential Differentiation Therapy Targets. Stem Cells 2015, 33, 2652-2663. [CrossRef]

Chen, K.-F.; Yeh, P.-Y.; Yeh, K.-H.; Lu, Y.-S.; Huang, S.-Y.; Cheng, A.-L. Down-regulation of Phospho-Akl Is a Major Molecular

Determinant of Bortezomib-Induced Apoptosis in Hepatocellular Carcinoma Cells. Cancer Res. 2008, 68, 669~707. [CrossRef]

Chen, K.F.; Yu, H.C.; Liu, T.H.; Lee, S.S.; Chen, P.J.; Cheng, A.L. Synergistic interactions between sorafenib and bortezomib in

hepalo-cellular carcinoma involve PP2A-dependenl Aki inactivation. J. Hepatol. 2010, 52, 88-95. [CrossRef]

Ogasawara, S.; Mihara, Y.; Kondo, R.; Kusano, H.; Akiba, J.; Yano, H. Antiproliferative Effect of Lenvatinib on Human Liver

Cancer Cell Lines In Vitro and In Vivo. Anticancer Res. 2019, 39, 5973--5982. [CrossRef]

Matsuki, M.; Hoshi, T.; Yamamoto, Y.; Ikemori-Kawada, M.; Minoshima, Y.; Funahashi, Y.; Matsui, J. Lenvatinib inhibits

angiogenesis and tumor fibroblast growth factor signaling pathways in human hepatocellular carcinoma models. Cancer Med.

2018, 7, 2641-2653. [CrossRef] [PubMed]

Futami, T.; Okada, H.; Kihara, R.; Kawase, T.; Nakayama, A.; Suzuki, T.; Kameda, M.; Shindoh, N.; Terasaka, T.; Hirano, M.; et al.

ASP5878, a Novel Inhibitor of FGFRl, 2, 3, and 4, Inhibits the Growth of FGF19-Expressing Hepalocellular Carcinoma. Mo/. Cancer

Ther. 2016, 16, 68--75. [CrossRef] [PubMed]

Myojin, Y.; Kodama, T.; Maesaka, K.; Motooka, D.; Sato, Y.; Tanaka, S.; Abe, Y.; Ohkawa, K.; Mita, E.; Hayashi, Y.; et al. ST6GAL1

Is a Novel Serum Biomarker for Lenvatinib-Susceptible FGF19-Driven Hepatocellular Carcinoma. Clin. Cancer Res. 2021, 27,

1150-1161. [CrossRef] [PubMed]

Qie, S.; Diehl, J.A. Cyclin Dl, cancer progression, and opportunities in cancer treatment. J. Mo/. Med. 2016, 94, 1313--1326.

[CrossRef] [PubMed]

Morishita, A.; Masaki, T. miRNA in hepatocellular carcinoma. Hepatol. Res. 2015, 45, 128-141. [CrossRef]

Shi, D.-M.; Bian, X.-Y.; Qin, C.-D.; Wu, W.-Z. m.iR-106b-5p promotes stem cell-like properties of hepatocellular carcinoma cells by

targeting PTEN via Pl3K/Akt pathway. OncoTargets Ther. 2018, 11, 571-585. [CrossRef]

Zhang, Q.; Song, G.; Yao, L.; Liu, Y.; Liu, M.; Li, S.; Tang, H. miR-3928v is induced by HBx via NF-kappaB/EGRJ and contributes

to hepatocellular carcinoma malignancy by down-regulating VDAC3. J. Exp. Clin. Cancer Res. 2018, 37, 14. [CrossRef]

Zhang, Y.; Wei, Y.; Li, X.; Liang, X.; Wang, L.; Song, J.; Zhang, X.; Zhang, C.; Niu, J.; Zhang, P.; et al. microRNA-874 suppresses tumor

proliferation and metastasis in hepatocellular carcinoma by targeting the DOR/EGFR/ERK pathway. Cell Death Dis. 2018, 9, 130.

[CrossRef]

Kohno, T.; Morishita, A.; Iwama, H.; Fujita, K.; Tani, J.; Takuma, K.; Nakahara, M.; Oura, K.; Tadokoro, T.; Nomura, T.; et al.

Comprehensive analysis of circulating microRNAs as predictive biomarkers for sorafenib therapy outcome in hepatocellular

carcinoma. Oneal. Lett. 2020, 20, 1727-1733. [CrossRef]

Int. f. Mol. Sci. 2022, 23, 1667

15 of 15

30.

Teufel, M.; Seidel, H.; Kochert, K.; Meinhardt, G.; Finn, R.S.; Llovet, J.M.; Bruix, J. Biomarkers Associated with Response to

31.

Regorafenib in Patients with Hepatocellular Carcinoma. Gastroenterology 2019, 156, 1731-1741. ICrossRef]

Weid.le, U.H.; Schmid, D.; Birzele, F.; Brinkmann, U. MicroRNAs Involved in Metastasis of Hepatocellular Carcinoma: Target

Candidates, Functionality and Efficacy in Animal Models and Prognostic Relevance. Cancer Genom. Proteom. 2020, 17, 1-21.

32.

33.

34.

[CrossRef] [PubMed]

Mizoguchi, A.; Takayama, A.; Arai, T.; Kawauchi, J.; Sudo, H. MicroRNA-8073: Tumor suppressor and potential therapeutic

treatment. PLoS ONE 2018, 13, e0209750. [CrossRef] [PubMed]

Faversani, A.; Amatori, S.; Augello, C.; Colombo, F.; Perretti, L.; Fanelli, M.; Ferrero, S.; Palleschi, A.; Pelicci, P.G.; Belloni, E.; et al.

miR-494-3p is a novel tumor driver of lung carcinogenesis. Oncotarget 2017, 8, 7231-7247. [CrossRef] [PubMed]

Chen, S.-M.; Wang, B.-Y.; Lee, C.-H.; Lee, H.-T.; Li, J.-J.; Hong, G.-C.; Hung, Y.-C.; Chien, P.-J.; Chang, C.-Y.; Hsu, L.-S.; et al.

Hinokitiol up-regulates miR-494-3p to suppress BMil expression and inhibits self-renewal of breast cancer stem/progenitor cells.

Oncoiarget 2017, 8, 76057-76068. [CrossRef]

35.

36.

37.

38.

39.

40.

41.

42.

43.

Lin, H.; Huang, Z.-P.; Liu, J.; Qiu, Y.; Tao, Y.-P.; Wang, M.-C.; Yao, H.; Hou, K.-Z.; Gu, F.-M.; Xu, X.-F. MiR-494-3p promotes PI3K/ AKT

pathway hyperactivation and human hepatocellular carcinoma progression by targeting ITEN. Sci. Rep. 2018, 8, 10461. [CrossRef]

[PubMed]

Park, S.; Lim, W.; Bazer, F.W.; Whang, K.-Y.; Song, G. Quercetin inhibits proliferation of endometriosis regulating cyclin DI and its

target microRNAs in vitro and in vivo. J. Nutr. Biochem. 2019, 63, 87-100. [CrossRef]

Ghanbarian, M.; Afgar, A.; Yadegarazari, R.; Najafi, R.; Teimoori-Toolabi, L. Through oxaliplatin resistance induction in

colorectal cancer cells, increasing ABCBl level accompanies decreasing level of miR-302c-5p, miR-3664-Sp and miR-129-Sp.

Biomed. Pharmacother. 2018, 108, 1070-1080. [CrossRef]

Gahm, D.; Srdic-Rajic, T.; Bogdanovic, A.; Loncar, Z.; Zuvela, M. Targeted therapy and personalized medicine in hepatocellular

carcinoma: Drug resistance, mechanisms, and treatment strategies. J. Hepatocell. Carcinoma 2017, 4, 93-103. [CrossRef]

Ghousein, A; Mosca, N.; Cartier, F.; Charpentier, J.; Dupuy, J.-W.; Raymond, A; Bioulac-Sage, P.; Grosset, C.F. miR-4510 blocks

hepatocellular carcinoma development through RAFl targeting and RAS/RAF /MEK/ERK signalling inactivation. Liver Int.

2020, 40, 240-251. [CrossRef]

Masaki, T.; Tokuda, M.; Yoshida, S.; Nakai, S.; Morishita, A.; Uchida, N.; Funaki, T.; Kita, Y.; Funakoshi, F.; Nonomura, T.; et al.

Comparison study of the expressions of myristoylated alanine-rich C kinase substrate in hepatocellular carcinoma, liver cirrhosis,

chronic hepatitis, and normal liver. Int. f. Oneal. 2005, 26, 661--071. [CrossRef]

Towbin, H.; Staehelin, T.; Gordon, J. Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets:

Procedure and some applications. Proc. Natl. Acad. Sci. USA 1979, 76, 4350-4354. [CrossRef] [PubMed]

Liu, S.; Du, Y.; Ma, H.; Liang, Q.; Zhu, X.; Tian, J. Preclinical comparison of regorafenib and sorafenib efficacy for hepatocellular

carcinoma using multimodality molecular imaging. Cancer Lett. 2019, 453, 74-83. [CrossRef] [PubMed]

Chen, Z.; Zhao, Y.; Yu, Y.; Pang, J.; Woodfield, S.E.; Tao, L.; Guan, S.; Zhang, H.; Bieerkehazhi, S.; Shi, Y.; et al. Small molecule

inhibitor regorafenib inhibits RET signaling in neuroblastoma cells and effectively suppresses tumor growth In Vivo. Oncotarget

2017, 8, 104090-104103. [CrossRef] [PubMed]

44.

D'Incalci, M.; Colombo, T.; Ubezio, P.; Nicoletti, I.; Giavazzi, R.; Erba, E.; Ferrarese, L.; Meco, D.; Riccardi, R.; Sessa, C.; et al.

The combination of yondelis and cisplatin is synergistic against human tumor xenografts. Eur. ]. Cancer 2003, 39, 1920-1926.

[CrossRef]

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る