リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Ecological and molecular perspectives on responders and non-responders to probiotics and prebiotics」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Ecological and molecular perspectives on responders and non-responders to probiotics and prebiotics

Ojima, Miriam N Yoshida, Keisuke Sakanaka, Mikiyasu Jiang, Lin Odamaki, Toshitaka Katayama, Takane 京都大学 DOI:10.1016/j.copbio.2021.06.023

2022.02

概要

Bifidobacteria are widely used as a probiotic for their health-promoting effects. To promote their growth, bifidogenic prebiotics, including human milk oligosaccharides (HMOs), have been added to supplements and infant formula. However, the efficacy of both probiotic and prebiotic interventions is often debated, as clinical responses vary significantly by case. Here, we review clinical studies that aimed to proliferate human-residential Bifidobacterium (HRB) strains in the gut, and we highlight the difference between responders and non-responders to such interventions through an ecological, niche-based perspective and an examination of the prevalence of genes responsible for prebiotic assimilation in HRB genomes. We discuss the criteria necessary to better evaluate the efficacy of probiotic and prebiotic interventions and the recent therapeutic potential shown by synbiotics.

この論文で使われている画像

関連論文

参考文献

1. Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI: Obesity alters gut microbial ecology. Proc Natl Acad Sci 2005, 102:11070–11075.

2. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, et al.: A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012, 490:55–60.

3. Kostic AD, Gevers D, Siljander H, Vatanen T, Hyötyläinen T, Hämäläinen AM, Peet A, Tillmann V, Pöhö P, Mattila I, et al.: The dynamics of the human infant gut microbiome in development and in progression toward type 1 diabetes. Cell Host Microbe 2015, 17:260–273.

4. Petersen C, Round JL: Defining dysbiosis and its influence on host immunity and disease. Cell Microbiol 2014, 16:1024–1033.

5. Global Market Insights: Probiotics Market Statistics 2018 | Industry Growth Report. 2019.

6. Global Market Insights: Prebiotics Market Share Report 2021-2027 | Global Statistics. 2021.

7. Tissier H: Recherches sur la flore intestinale des nourrissons (etat normal et pathologique). 1900,

8. Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF, Chater KF, van Sinderen D: Genomics of Actinobacteria: Tracing the Evolutionary History of an Ancient Phylum. Microbiol Mol Biol Rev 2007, 71:495–548.

9. Ventura M, O’Flaherty S, Claesson MJ, Turroni F, Klaenhammer TR, Van Sinderen D, O’Toole PW: Genome-scale analyses of health-promoting bacteria: probiogenomics. Nat Rev Microbiol 2009, 7:61–71.

10. Lamendella R, Santo Domingo JW, Kelty C, Oerther DB: Bifidobacteria in feces and environmental waters. Appl Environ Microbiol 2008, 74:575–584.

11. Moeller AH, Caro-Quintero A, Mjungu D, Georgiev A V., Lonsdorf E V., Muller MN, Pusey AE, Peeters M, Hahn BH, Ochman H: Cospeciation of gut microbiota with hominids. Science (80- ) 2016, 353:380–382.

12. López P, González-Rodríguez I, Gueimonde M, Margolles A, Suárez A: Immune response to Bifidobacterium bifidum strains support Treg/Th17 plasticity. PLoS One 2011, 6.

13. Kalliomäki M, Kirjavainen P, Eerola E, Kero P, Salminen S, Isolauri E: Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J Allergy Clin Immunol 2001, 107:129–34.

14. Meng D, Sommella E, Salviati E, Campiglia P, Ganguli K, Djebali K, Zhu W, Walker WA: Indole-3-lactic acid, a metabolite of tryptophan, secreted by Bifidobacterium longum subspecies infantis is anti-inflammatory in the immature intestine. Pediatr Res 2019, doi:10.1038/s41390-019-0740-x.

15. Verma R, Lee C, Jeun EJ: Cell Surface Polysaccharides of Bifidobacterium bifidum Induce the Generation of Foxp3 + Regulatory T Cells. Sci Immunol 2019, 103:3–4.

16. Ojima MN, Gotoh A, Takada H, Odamaki T, Xiao J, Katoh T, Katayama T: Bifidobacterium bifidum Suppresses Gut Inflammation Caused by Repeated Antibiotic Disturbance Without Recovering Gut Microbiome Diversity in Mice. Front Microbiol 2020, 11:1–13.

17. Riedel CU, Foata F, Philippe D, Adolfsson O, Eikmanns BJ, Blum S: Anti-inflammatory effects of bifidobacteria by inhibition of LPS-induced NF-κB activation. World J Gastroenterol 2006, 12:3729–3735.

18. Underwood MA, Sohn K: The Microbiota of the Extremely Preterm Infant. Clin Perinatol 2017, 44:407–427.

19. Westerbeek EAM, van den Berg A, Lafeber HN, Knol J, Fetter WPF, van Elburg RM: The intestinal bacterial colonisation in preterm infants: A review of the literature. Clin Nutr 2006, 25:361–368.

20. Magne F, Suau A, Pochart P, Desjeux JF: Fecal microbial community in preterm infants. J Pediatr Gastroenterol Nutr 2005, 41:386–392.

21. Matamoros S, Gras-Leguen C, Le Vacon F, Potel G, De La Cochetiere MF: Development of intestinal microbiota in infants and its impact on health. Trends Microbiol 2013, 21:167–173.

22. Engfer MB, Stahl B, Finke B, Sawatzki G, Daniel H: Human milk oligosaccharides are resistant to enzymatic hydrolysis in the upper gastrointestinal tract. Am J Clin Nutr 2000, 71:1589–1596.

23. Bode L: Human milk oligosaccharides: Every baby needs a sugar mama. Glycobiology 2012, 22:1147–1162.

24. Verkhnyatskaya S, Ferrari M, De Vos P, Walvoort MTC: Shaping the infant microbiome with non-digestible carbohydrates. Front Microbiol 2019, 10:1–8.

25. Spaak JW, De Laender F: Intuitive and broadly applicable definitions of niche and fitness differences. Ecol Lett 2020, 23:1117–1128.

26. HilleRisLambers J, Adler PB, Harpole WS, Levine JM, Mayfield MM: Rethinking community assembly through the lens of coexistence theory. Annu Rev Ecol Evol Syst 2012, 43:227–248.

27. Chesson P: Mechanisms of Maintaining Species Diversity. Annu Rev Ecol Syst 2000, 31:343–66.

28. Lu HP, Lai YC, Huang SW, Chen HC, Hsieh CH, Yu HT: Spatial heterogeneity of gut microbiota reveals multiple bacterial communities with distinct characteristics. Sci Rep 2014, 4.

29. Duncan K, Carey-Ewend K, Vaishnava S: Spatial analysis of gut microbiome reveals a distinct ecological niche associated with the mucus layer. Gut Microbes 2021, 00:1–21.

30. Zhang Z, Geng J, Tang X, Fan H, Xu J, Wen X, Ma Z, Shi P: Spatial heterogeneity and co-occurrence patterns of human mucosal-associated intestinal microbiota. ISME J 2014, 8:881–893.

31. Suez J, Zmora N, Segal E, Elinav E: The pros, cons, and many unknowns of probiotics. Nat Med 2019, 25:716–729.

32. Faith JJ, Guruge JL, Charbonneau M, Subramanian S, Seedorf H, Goodman AL, Clemente JC, Knight R, Heath AC, Leibel RL, et al.: The long-term stability of the human gut microbiota. Science (80- ) 2013, 341.

33. Lawley TD, Walker AW: Intestinal colonization resistance. Immunology 2013, 138:1–11.

34. Maldonado-Gómez MX, Martínez I, Bottacini F, O’Callaghan A, Ventura M, van Sinderen D, Hillmann B, Vangay P, Knights D, Hutkins RW, et al.: Stable Engraftment of Bifidobacterium longum AH1206 in the Human Gut Depends on Individualized Features of the Resident Microbiome. Cell Host Microbe 2016, 20:515–526. By utilizing a strain-specific approach, the authors showed that colonization resistance in the adult gut microbiota can be overcome with sufficiently high niche differences between exogenously administered probiotics and the resident microbiota. B. longum AH1206 persisted in individuals with open niches in their baseline, resident gut microbiota.

35. Sprockett D, Fukami T, Relman DA: Role of priority effects in the early-life assembly of the gut microbiota. Nat Rev Gastroenterol Hepatol 2018, 15:197–205.

36. Fukami T: Historical Contingency in Community Assembly: Integrating Niches, Species Pools, and Priority Effects. Annu Rev Ecol Evol Syst 2015, doi:10.1146/annurev-ecolsys-110411-160340.

37. Costeloe K, Hardy P, Juszczak E, Wilks M, Millar MR: Bifidobacterium breve BBG-001 in very preterm infants: A randomised controlled phase 3 trial. Lancet 2016, 387:649–660.

38. Kitajima H, Sumida Y, Tanaka R, Yuki N, Takayama H, Fujimura M: Early administration of Bifidobacterium breve to preterm infants: Randomised controlled trial. Arch Dis Child Fetal Neonatal Ed 1997, 76:101–107.

39. Satoh Y, Koichi S, Hikaru U, Hiromichi S, Hiroaki S, Yoshikazu O, Seigo S, Satoru N, Toshiaki S, Yamashiro Y: Bifidobacteria prevents necrotizing enterocolitis and infection in preterm infants. Int J Probiotics Prebiotics 2007, 2:149–154.

40. Li Y, Shimizu T, Hosaka A, Kaneko N, Ohtsuka Y, Yamashiro Y: Effects of Bifidobacterium breve supplementation on intestinal flora of low birth weight infants. Pediatr Int 2004, 46:509–515.

41. Horigome A, Hisata K, Odamaki T, Iwabuchi N, Xiao J, Shimizu T: Colonization of Supplemented Bifidobacterium breve M-16V in Low Birth Weight Infants and Its Effects on Their Gut Microbiota Weeks Post-administration. Front Microbiol 2021, 12:1–11. Clinical trial in which successful colonization by B. breve M-16V was observed. Early colonization by M-16V in the infant gut not only prevented the proliferation of pathogenic bacteria (inhibitory priority effects), but also stimulated the growth of other Bifidobacterium species (facilitative priority effects).

42. Underwood MA, Davis JCC, Kalanetra KM, Gehlot S, Patole S, Tancredi DJ, Mills DA, Lebrilla CB, Simmer K: Digestion of human milk oligosaccharides by Bifidobacterium breve in the premature infant. J Pediatr Gastroenterol Nutr 2017, 65:449–455.

43. Thongaram T, Hoeflinger JL, Chow JM, Miller MJ: Human milk oligosaccharide consumption by probiotic and human-associated bifidobacteria and lactobacilli. J Dairy Sci 2017, 100:7825–7833.

44. Frese SA, Hutton AA, Contreras LN, Shaw CA, Palumbo MC, Casaburi G, Xu G, Davis JCC, Lebrilla CB, Henrick BM, et al.: Persistence of Supplemented Bifidobacterium longum subsp. infantis EVC001 in Breastfed Infants. mSphere 2017, 2:1–15. This study reported stable colonization for at least a month by B. infantis EVC001 in breastfed infants. The authors also report changes in the concentrations of HMOs as well as short chain fatty acids in fecal samples. In doing so, they demonstrate that B. infantis EVC001 can colonize the infant gut due to its ability to utilize HMOs and improve fecal biochemistry.

45. O’Brien CE, Meier AK, Cernioglo K, Mitchell RD, Casaburi G, Frese SA, Henrick BM, Underwood MA, Smilowitz JT: Early probiotic supplementation with B. infantis in breastfed infants leads to persistent colonization at 1 year. Pediatr Res 2021, doi:10.1038/s41390-020-01350-0. A long-term study that follows a cohort of infants given B. infantis EVC001 (7 days after birth) and reports on the changes in gut microbiota composition at 4, 6, 8, 10, and 12 months after birth. This study was able to show that the combination of early probiotic intervention (more open niches) and breastfeeding (fitness advantage conferred by HMOs) allows for B. infantis EVC001 to persist in the infant gut for at least a year postnatal.

46. Duar RM, Casaburi G, Mitchell RD, Scofield LNC, Ramirez CAO, Barile D, Henrick BM, Frese SA: Comparative Genome Analysis of Bifidobacterium among Commercial Probiotics. Nutrients 2020, 12.

47. Berger B, Porta N, Foata F, Grathwohl D, Delley M, Moine D, Charpagne A, Siegwald L, Descombes P, Alliet P, et al.: Linking human milk oligosaccharides, infant fecal community types, and later risk to require antibiotics. MBio 2020, 11:1–18.

48. Iribarren C, Törnblom H, Aziz I, Magnusson MK, Sundin J, Vigsnæs LK, Amundsen ID, McConnell B, Seitzberg D, Öhman L, et al.: Human milk oligosaccharide supplementation in irritable bowel syndrome patients: A parallel, randomized, double-blind, placebo-controlled study. Neurogastroenterol Motil 2020, 32:1–12.

49. Garrido D, Ruiz-Moyano S, Kirmiz N, Davis JC, Totten SM, Lemay DG, Ugalde JA, German JB, Lebrilla CB, Mills DA: A novel gene cluster allows preferential utilization of fucosylated milk oligosaccharides in Bifidobacterium longum subsp. longum SC596. Sci Reports 2016, 6:1–18.

50. Matsuki T, Yahagi K, Mori H, Matsumoto H, Hara T, Tajima S, Ogawa E, Kodama H, Yamamoto K, Yamada T, et al.: A key genetic factor for fucosyllactose utilization affects infant gut microbiota development. Nat Commun 2016, 7:11939.

51. Sakanaka M, Hansen ME, Gotoh A, Katoh T, Yoshida K, Odamaki T, Yachi H, Sugiyama Y, Kurihara S, Hirose J, et al.: Evolutionary adaptation in fucosyllactose uptake systems supports bifidobacteria-infant symbiosis. Sci Adv 2019, 5:eaaw7696. Through the identification and characterization of two fucosyllactose transporters, this study provides molecular insight into how bifidobacteria have coevolved with their human hosts. The abundance of this transporter shows a strong association with a bifidobacteria-rich microbiota in breastfed infants.

52. Sakanaka M, Gotoh A, Yoshida K, Odamaki T, Koguchi H, Xiao JZ, Kitaoka M, Katayama T: Varied pathways of infant gut-associated Bifidobacterium to assimilate human milk oligosaccharides: Prevalence of the gene set and its correlation with bifidobacteria-rich microbiota formation. Nutrients 2020, 12:1–21. A comprehensive review of the unique enzymatic machinery that bifidobacteria possess for the assimilation of HMOs, which enable them to proliferate in the infant gut microbiota.

53. Gotoh A, Ojima MN, Katayama T: Minority species influences microbiota formation: the role of Bifidobacterium with extracellular glycosidases in bifidus flora formation in breastfed infant guts. Microb Biotechnol 2019, doi:10.1111/1751-7915.13366.

54. Katayama T, Sakuma A, Kimura T, Makimura Y, Hiratake J, Sakata K, Yamanoi T, Kumagai H, Yamamoto K: Molecular cloning and characterization of Bifidobacterium bifidum 1,2-alpha-L-fucosidase (AfcA), a novel inverting glycosidase (glycoside hydrolase family 95). J Bacteriol 2004, 186:4885–93.

55. James K, Motherway MOC, Bottacini F, Van Sinderen D: Bifidobacterium breve UCC2003 metabolises the human milk oligosaccharides lacto-N-tetraose and lacto-N-neo-tetraose through overlapping, yet distinct pathways. Sci Rep 2016, 6:38560.

56. Ruiz-Moyano S, Totten SM, Garrido D a., Smilowitz JT, Bruce German J, Lebrilla CB, Mills D a.: Variation in consumption of human milk oligosaccharides by infant gut-associated strains of Bifidobacterium breve. Appl Environ Microbiol 2013, 79:6040–6049.

57. Thomson P, Medina DA, Garrido D: Human milk oligosaccharides and infant gut bifidobacteria: Molecular strategies for their utilization. Food Microbiol 2018, 75:37–46.

58. Nilsson KGI: Enzymatic synthesis of oligosaccharides. Trends Biotechnol 1988, 6:256–264.

59. Sierra C, Bernal MJ, Blasco J, Martínez R, Dalmau J, Ortuño I, Espín B, Vasallo MI, Gil D, Vidal ML, et al.: Prebiotic effect during the first year of life in healthy infants fed formula containing GOS as the only prebiotic: a multicentre, randomised, double-blind and placebo-controlled trial. Eur J Nutr 2015, 54:89–99.

60. Matsuki T, Tajima S, Hara T, Yahagi K, Ogawa E, Kodama H: Infant formula with galacto-oligosaccharides (OM55N) stimulates the growth of indigenous bifidobacteria in healthy term infants. Benef Microbes 2016, 7:453–461.

61. Shigehisa A, Sotoya H, Sato T, Hara T, Matsumoto H, Matsuki T: Characterization of a bifidobacterial system that utilizes galacto-oligosaccharides. Microbiol (United Kingdom) 2015, 161:1463–1470.

62. Sotoya H, Shigehisa A, Hara T, Matsumoto H, Hatano H, Matsuki T: Identification of genes involved in galactooligosaccharide utilization in Bifidobacterium breve strain YIT 4014T. Microbiol (United Kingdom) 2017, 163:1420–1428.

63. Yoshida K, Hirano R, Sakai Y, Choi M, Sakanaka M, Iino H, Xiao J, Katayama T, Odamaki T: Bifidobacterium response to lactulose ingestion in the gut relies on a solute-binding protein- dependent ABC transporter. Commun Biol 2021, 4:1–8. This study identified the transporter responsible (LT-SBP) for the assimilation of prebiotic lactulose. In doing so, this study is one of the first to clearly show that responders to prebiotic interventions can be predicted by quantifying the abundance of key prebiotic-utilization genes in the baseline gut microbiota.

64. Liu F, Li P, Chen M, Luo Y, Prabhakar M, Zheng H, He Y, Qi Q, Long H, Zhang Y, et al.: Fructooligosaccharide (FOS) and Galactooligosaccharide (GOS) Increase Bifidobacterium but Reduce Butyrate Producing Bacteria with Adverse Glycemic Metabolism in healthy young population. Sci Rep 2017, 7:1–12.

65. Sakai Y, Seki N, Hamano K, Ochi H, Abe F, Masuda K, Iino H: Prebiotic effect of two grams of lactulose in healthy Japanese women: a randomised, double-blind, placebo-controlled crossover trial. Benef Microbes 2019, 10:629–639.

66. Izydorczyk MS, Biliaderis CG: Cereal arabinoxylans: advances in structure and physicochemical properties. Carbohydr Polym 1995, 28:33–48.

67. Rogowski A, Briggs JA, Mortimer JC, Tryfona T, Terrapon N, Lowe EC, Baslé A, Morland C, Day AM, Zheng H, et al.: Glycan complexity dictates microbial resource allocation in the large intestine. Nat Commun 2015, 6:1–15.

68. Maki KC, Gibson GR, Dickmann RS, Kendall CWC, Chen CYO, Costabile A, Comelli EM, McKay DL, Almeida NG, Jenkins D, et al.: Digestive and physiologic effects of a wheat bran extract, arabino-xylan-oligosaccharide, in breakfast cereal. Nutrition 2012, 28:1115–1121.

69. Rivière A, Moens F, Selak M, Maes D, Weckx S, De Vuyst L: The ability of bifidobacteria to degrade arabinoxylan oligosaccharide constituents and derived oligosaccharides is strain dependent. Appl Environ Microbiol 2014, 80:204–217.

70. Saito Y, Shigehisa A, Watanabe Y, Tsukuda N, Moriyama-Ohara K, Hara T, Matsumoto S, Tsuji H, Matsuki T: Multiple Transporters and Glycoside Hydrolases Are Involved in Arabinoxylan-Derived Oligosaccharide Utilization in Bifidobacterium pseudocatenulatum. Appl Environ Microbiol 2020, 86:1–11. This study elucidates the mechanisms as well as the strain-dependent nature of arabinoxylan oligosaccharide utilization in bifidobacteria. They identify the SBPs of transporters with high binding affinities for arabinoxylan oligosaccharides.

71. Arboleya S, Bottacini F, O’Connell-Motherway M, Ryan CA, Ross RP, van Sinderen D, Stanton C: Gene-trait matching across the Bifidobacterium longum pan-genome reveals considerable diversity in carbohydrate catabolism among human infant strains. BMC Genomics 2018, 19:1–16.

72. Calame W, Weseler AR, Viebke C, Flynn C, Siemensma AD: Gum arabic establishes prebiotic functionality in healthy human volunteers in a dose-dependent manner. Br J Nutr 2008, 100:1269–1275.

73. Sasaki Y, Horigome A, Odamaki T, Xiao J-Z, Ishiwata A, Ito Y, Kitahara K, Fujita K: Characterization of a novel 3- O -α-D-galactosyl-α-L-arabinofuranosidase for the assimilation of gum arabic AGP in Bifidobacterium longum subsp. longum. Appl Environ Microbiol 2021, doi:10.1128/aem.02690-20. This study demonstrates that a molecular and mechanistic understanding of glycan utilization is necessary to predict responder status to prebiotics. The assimilation of gum arabic AGP is a two-step process, in which GAfase first removes a disaccharide cap from AGP, and the de-capped sugar is further metabolized. While many bifidobacteria possess the enzymes to utilize the de-capped sugar, the ability to utilize gum arabic AGP is dependent on the presence of the less widely distributed GAfase.

74. Fujita K, Sakaguchi T, Sakamoto A, Shimokawa M, Kitahara K: Bifidobacterium longum subsp. longum exo-β-1,3-galactanase, an enzyme for the degradation of type II arabinogalactan. Appl Environ Microbiol 2014, 80:4577–4584.

75. Robinson RR, Feirtag J, Slavin JL: Effects of dietary arabinogalactan on gastrointestinal and blood parameters in healthy human subjects. J Am Coll Nutr 2001, 20:279–285.

76. Tester RF, Karkalas J: CARBOHYDRATES | Classification and Properties. Encycl Food Sci Nutr 2003, doi:10.1016/b0-12-227055-x/00166-8.

77. O’Connell KJ, Motherway MOC, O’Callaghan J, Fitzgerald GF, Paul Ross R, Ventura M, Stanton C, van Sinderen D: Metabolism of four α-glycosidic linkage-containing oligosaccharides by Bifidobacterium breve UCC2003. Appl Environ Microbiol 2013, 79:6280–6292.

78. Shepherd ES, Deloache WC, Pruss KM, Whitaker WR, Sonnenburg JL: An exclusive metabolic niche enables strain engraftment in the gut microbiota. Nature 2018, 557:434–438.

79. Phavichitr N, Wang S, Chomto S, Tantibhaedhyangkul R, Kakourou A, Intarakhao S, Jongpiputvanich S, Wongteerasut A, Ben-Amor K, Martin R, et al.: Impact of synbiotics on gut microbiota during early life: a randomized, double-blind study. Sci Rep 2021, 11:1–12.

80. Kosuwon P, Lao-araya M, Uthaisangsook S, Lay C, Bindels J, Knol J, Chatchatee P: A synbiotic mixture of scGOS/lcFOS and Bifidobacterium breve M-16V increases faecal Bifidobacterium in healthy young children. Benef Microbes 2018, 9:541–552.

81. Guarner F, Schaafsma GJ: Probiotics. Int J Food Microbiol 1998, 39:237–238.

82. Gibson GR, Hutkins R, Sanders ME, Prescott SL, Reimer RA, Salminen SJ, Scott K, Stanton C, Swanson KS, Cani PD, et al.: CONSENSUS The International Scientific Association and scope of prebiotics. Nat Publ Gr 2017, 14:491–502.

83. Wong CB, Odamaki T, Xiao JZ: Insights into the reason of Human-Residential Bifidobacteria (HRB) being the natural inhabitants of the human gut and their potential health-promoting benefits. FEMS Microbiol Rev 2020, 44:369–385.

84. Martín R, Langella P: Emerging health concepts in the probiotics field: Streamlining the definitions. Front Microbiol 2019, 10.

85. Reuter G: [Comparative Studies on the Bifidus Flora in the Feces of Infants and Adults. With a Contribution to Classification and Nomenclature of Bifidus Strains]. Zentralbl Bakteriol Orig 1963, 191:486–507.

86. Scardovi V, Crociani F: Bifidobacterium catenulatum, Bifidobacterium dentium, and Bifidobacterium angulatum: Three New Species and Their Deoxyribonucleic cid Homology Relationships. Int J Syst Bacteriol 1974, 24:6–20.

87. Morita H, Nakano A, Onoda H, Toh H, Oshima K, Takami H, Murakami M, Fukuda S, Takizawa T, Kuwahara T, et al.: Bifidobacterium kashiwanohense sp. nov., isolated from healthy infant faeces. Int J Syst Evol Microbiol 2011, 61:2610–2615.

88. Lauer E: Bifidobacterium gallicum sp. nov. isolated from human feces. Int J Syst Bacteriol 1990, 40:100–102.

89. Morita H, Toh H, Oshima K, Nakano A, Arakawa K, Takayama Y, Kurokawa R, Takanashi K, Honda K, Hattori M: Complete genome sequence of Bifidobacterium pseudocatenulatum JCM 1200T isolated from infant feces. J Biotechnol 2015, 210:68–69.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る