リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Calorie restriction mimetic drugs could favorably influence gut microbiota leading to lifespan extension」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Calorie restriction mimetic drugs could favorably influence gut microbiota leading to lifespan extension

Shintani, Tomoya Shintani, Hideya Sato, Masashi Ashida, Hisashi 神戸大学

2023.12

概要

Calorie restriction (CR) can prolong human lifespan, but enforcing long-term CR is difficult. Thus, a drug that reproduces the effects of CR without CR is required. More than 10 drugs have been listed as CR mimetics (CRM), and some of which are conventionally categorized as upstream-type CRMs showing glycolytic inhibition, whereas the others are categorized as downstream-type CRMs that regulate or genetically modulate intracellular signaling proteins. Intriguingly, recent reports have revealed the beneficial effects of CRMs on the body such as improving the host body condition via intestinal bacteria and their metabolites. This beneficial effect of gut microbiota may lead to lifespan extension. Thus, CRMs may have a dual effect on longevity. However, no reports have collectively discussed them as CRMs; hence, our knowledge about CRM and its physiological effects on the host remains fragmentary. This study is the first to present and collectively discuss the accumulative evidence of CRMs improving the gut environments for healthy lifespan extension, after enumerating the latest scientific findings related to the gut microbiome and CR. The conclusion drawn from this discussion is that CRM may partially extend the lifespan through its effect on the gut microbiota. CRMs increase beneficial bacteria abundance by decreasing harmful bacteria rather than increasing the diversity of the microbiome. Thus, the effect of CRMs on the gut could be different from that of conventional prebiotics and seemed similar to that of next-generation prebiotics.

この論文で使われている画像

参考文献

1. Madeo F, Pietrocola F, Eisenberg T, Kroemer G. Caloric

restriction mimetics: towards a molecular definition. Nat

Rev Drug Discov [Internet]. Nature Publishing Group;

2014;13:727–40. https://​doi.​org/​10.​1038/​nrd43​91.

2. Shintani H, Shintani T, Ashida H, Sato M. Calorie

restriction mimetics: upstream-type compounds for modulating glucose metabolism. Nutrients. 2018;10:1821

(Multidisciplinary Digital Publishing Institute).

3. Most J, Tosti V, Redman LM, Fontana L. Calorie

restriction in humans: an update. Ageing Res Rev.

2017;39:36–45.

4. Shintani T. Human antiaging research: a viewpoint from

food science on calorie restriction mimetics. Food Res.

2020;4:2333–5.

5. Martin CK, Bhapkar M, Pittas AG, Pieper CF, Das

SK, Williamson DA, et al. Effect of calorie restriction on mood, quality of life, sleep, and sexual function in healthy nonobese adults. JAMA Intern Med.

2016;176:743.

6. Dorling JL, van Vliet S, Huffman KM, Kraus WE, Bhapkar M, Pieper CF, et al. Effects of caloric restriction on

human physiological, psychological, and behavioral outcomes: highlights from CALERIE phase 2. Nutr Rev.

2021;79:98–113.

7. Ingram DK, Anson RM, de Cabo R, Mamczarz J, Zhu

M, Mattison J, et al. Development of calorie restriction

mimetics as aprolongevity strategy. Ann N Y Acad Sci.

2004;1019:412–23.

8. Madeo F, Pietrocola F, Eisenberg T, Kroemer G. Caloric

restriction mimetics: towards a molecular definition. Nat

Rev Drug Discov. 2014;13:727–40.

9. Madeo F, Carmona-Gutierrez D, Hofer SJ, Kroemer G.

Caloric restriction mimetics against age-associated disease: targets, mechanisms, and therapeutic potential. Cell

Metab. 2019;29:592–610.

Vol:. (1234567890)

13

GeroScience (2023) 45:3475–3490

10. Mark LA, Donald IK, George RS. 2-Deoxy-D-glucose

feeding in rats mimics physiologic effects of calorie

restriction. J Anti Aging Med. 1998;1:327–37.

11. Ingram DK, Roth GS. Glycolytic inhibition as a strategy

for developing calorie restriction mimetics. Exp Gerontol. 2011;46:148–54.

12. Ingram DK, Roth GS. Calorie restriction mimetics: can

you have your cake and eat it, too? Ageing Res Rev.

2015;20:46–62.

https://​doi.​org/​10.​1016/j.​arr.​2014.​11.​

005. (Elsevier B.V.).

13. Ingram DK, Roth GS. Glycolytic inhibition: an effective strategy for developing calorie restriction mimetics.

Switzerland: Geroscience; 2020.

14. Lynch SV, Pedersen O. The human intestinal microbiome

in health and disease. New England Journal of Medicine.

2016;375:2369–79. https://​doi.​org/​10.​1056/​NEJMr​a1600​

266. (Massachusetts Medical Society).

15. Ottman N, Smidt H, de Vos WM, Belzer C. Thefunction

of our microbiota: who is out there and what do they do?

Front Cell Infect Microbiol. 2012;2:104.

16. Sekirov I, Russell SL, Antunes LCM, Finlay BB.

Gut Microbiota in Health and Disease. Physiol Rev.

2010;90:859–904.

17. Lynch S v., Pedersen O. The human intestinal microbiome in health and disease. New England J Med

2016;375:2369–79.

18. Odamaki T, Kato K, Sugahara H, Hashikura N, Takahashi S, Xiao J, et al. Age-related changes in gut microbiota composition from newborn to centenarian: a crosssectional study. BMC Microbiol. 2016;16:90. https://​doi.​

org/​10.​1186/​s12866-​016-​0708-5.

19. Ríos-Covián

D,

Ruas-Madiedo

P,

Margolles

A,Gueimonde M, de los Reyes-Gavilán CG, Salazar N.

Intestinal short chain fattyacids and their link with diet

and human health. Front Microbiol. 2016;7:185.

20. Koh A, De Vadder F, Kovatcheva-Datchary P, Bäckhed F. From dietary fiber to host physiology: shortchain fatty acids as key bacterial metabolites. Cell.

2016;165:1332–45.

21. Holscher HD. Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes. 2017;8:172–84.

22. Hamer HM, Jonkers D, Venema K, Vanhoutvin S,

Troost FJ, Brummer R-J. Review article: the role of

butyrate on colonic function. Aliment Pharmacol Ther.

2007;27:104–19.

23. George Kerry R, Patra JK, Gouda S, Park Y, Shin H-S,

Das G. Benefaction of probiotics for human health: a

review. J Food Drug Anal. 2018;26:927–39.

24. Singh RK, Chang H-W, Yan D, Lee KM, Ucmak D,

Wong K, et al. Influence of diet on the gut microbiome and implications for human health. J Transl Med.

2017;15:73.

25. Hartstra AV, Bouter KEC, Bäckhed F, Nieuwdorp M.

Insights into the role of the microbiome in obesity and

type 2 diabetes. Diabetes Care. 2015;38:159–65.

26. David LA, Maurice CF, Carmody RN, Gootenberg

DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature.

2014;505:559–63.

27. Yang J-Y, Lee Y-S, Kim Y, Lee S-H, Ryu S, Fukuda S,

et al. Gut commensal Bacteroides acidifaciens prevents

GeroScience (2023) 45:3475–3490 obesity and improves insulin sensitivity in mice. Mucosal

Immunol. 2017;10:104–16.

28. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V,

Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature.

2006;444:1027–31.

29. Markowiak-Kopeć P, Śliżewska K. The effect of probiotics on the production of short-chain fatty acids by

human intestinal microbiome. Nutrients. 2020;12:1107.

30. Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA,

Knight RD, Gordon JI. Obesity alters gut microbial

ecology. Proc Natl Acad Sci. 2005;102:11070–5.

31. Mariat D, Firmesse O, Levenez F, Guimarăes V, Sokol

H, Doré J, et al. The Firmicutes/Bacteroidetes ratio of

the human microbiota changes with age. BMC Microbiol. 2009;9:123.

32. Wu C-S, Muthyala SDV, Klemashevich C, Ufondu AU,

Menon R, Chen Z, et al. Age-dependent remodeling of

gut microbiome and host serum metabolome in mice.

Aging. 2021;13:6330–45.

33. Biagi E, Franceschi C, Rampelli S, Severgnini M,

Ostan R, Turroni S, et al. Gut microbiota and extreme

longevity. Curr Biol. 2016;26:1480–5.

34. Ang QY, Alexander M, Newman JC, Tian Y, Cai J,

Upadhyay V, et al. Ketogenic diets alter the gut microbiome resulting in decreased intestinal Th17 cells. Cell.

2020;181:1263-1275.e16.

35. Olson CA, Vuong HE, Yano JM, Liang QY, Nusbaum

DJ, Hsiao EY. The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell. 2018;173:17281741.e13.

36. Russo M, Fabersani E, Abeijón-Mukdsi M, Ross R,

Fontana C, Benítez-Páez A, et al. Lactobacillus fermentum CRL1446 ameliorates oxidative and metabolic

parameters by increasing intestinal feruloyl esterase

activity and modulating microbiota in caloric-restricted

mice. Nutrients. 2016;8:415.

37. Ruiz A, Cerdó T, Jáuregui R, Pieper DH, Marcos A,

Clemente A, et al. One-year calorie restriction impacts

gut microbial composition but not its metabolic performance in obese adolescents. Environ Microbiol.

2017;19:1536–51.

38. Zhang Y, Qi H, Wang L, Hu C, Gao A, Wu Q, et al.

Fasting and refeeding triggers specific changes in

bile acid profiles and gut microbiota.J Diabetes.

2023;15:165–80

39. Chaudhury A, Duvoor C, Reddy Dendi VS, Kraleti

S, Chada A, Ravilla R, et al. Clinical review of antidiabetic drugs: implicationsfor type 2 diabetes mellitus

management. Front Endocrinol (Lausanne). 2017;8:6.

40. Bouchoucha M, Uzzan B, Cohen R. Metformin and

digestive disorders. Diabetes Metab. 2011;37:90–6.

41. Rojas LBA, Gomes MB. Metformin: an old but still

the best treatment for type 2 diabetes. Diabetol Metab

Syndr. 2013;5:6.

42. Bailey CJ, Turner RC. Metformin. N Engl J Med.

1996;334:574–9.

43. Shurrab NT, Arafa E-SA. Metformin: a review of its

therapeutic efficacy and adverse effects. Obes Med.

2020;17:100186.

3487

44. Shintani H, Shintani T. Effects of antidiabetic drugs

that cause glucose excretion directly from the body on

mortality. Med Drug Discov. 2020;8: 100062.

45. Zhou G, Myers R, Li Y, Chen Y, Shen X, FenykMelody J, et al. Role of AMP-activated protein kinase

in mechanism of metformin action. J Clin Investig.

2001;108:1167–74.

46. Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B.

Metformin: from mechanisms of action to therapies. Cell

Metab. 2014;20:953–66.

47. Morita Y, Nogami M, Sakaguchi K, Okada Y, Hirota Y,

Sugawara K, et al. Enhanced release of glucose into the

intraluminal space of the intestine associated with metformin treatment as revealed by [18F]fluorodeoxyglucose

PET-MRI. Diabetes Care. 2020;43:1796–802.

48. Pascale A, Marchesi N, Govoni S, Coppola A, Gazzaruso

C. The role of gut microbiota in obesity, diabetes mellitus, and effect of metformin: new insights into old diseases. Curr Opin Pharmacol. 2019;49:1–5.

49 Shin N-R, Lee J-C, Lee H-Y, Kim M-S, Whon TW,

Lee M-S, et al. An increase in the Akkermansia spp.

population induced by metformin treatment improves

glucose homeostasis in diet-induced obese mice. Gut.

2014;63:727–35.

50. Sun L, Xie C, Wang G, Wu Y, Wu Q, Wang X, et al. Gut

microbiota and intestinal FXR mediate the clinical benefits of metformin. Nat Med. 2018;24:1919–29.

51. Wu H, Esteve E, Tremaroli V, Khan MT, Caesar R, Mannerås-Holm L, et al. Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes,

contributing to the therapeutic effects of the drug. Nat

Med. 2017;23:850–8.

52. Bryrup T, Thomsen CW, Kern T, Allin KH, Brandslund

I, Jørgensen NR, et al. Metformin-induced changes of the

gut microbiota in healthy young men: results of a nonblinded, one-armed intervention study. Diabetologia.

2019;62:1024–35.

53. Forslund K, Hildebrand F, Nielsen T, Falony G, le Chatelier E, Sunagawa S, et al. Disentangling type 2 diabetes and metformin treatment signatures in the human gut

microbiota. Nature. 2015;528:262–6.

54. Chiasson J-L, Josse RG, Gomis R, Hanefeld M, Karasik

A, Laakso M. Acarbose for prevention of type 2 diabetes mellitus: the STOP-NIDDM randomised trial. Lancet.

2002;359:2072–7.

55. Hollander P. Safety profile of acarbose, an α-glucosidase

inhibitor. Drugs. 1992;44:47–53.

56. Yee HS, Fong NT. A review of the safety and efficacy

of acarbose in diabetes mellitus. Pharmacotherapy.

1996;16:792–805.

57. Lebovitz HE. Alpha-glucosidase inhibitors. Endocrinol

Metab Clin North Am. 1997;26:539–51.

58. Campbell LK, White JR, Campbell RK. Acarbose: its

role in the treatment of diabetes mellitus. Ann Pharmacother. 1996;30:1255–62.

59. Harrison DE, Strong R, Allison DB, Ames BN, Astle

CM, Atamna H, et al. Acarbose, 17-α-estradiol, and nordihydroguaiaretic acid extend mouse lifespan preferentially in males. Aging Cell. 2014;13:273–82.

Vol.: (0123456789)

13

3488

60. Dehghan-Kooshkghazi M, Mathers JC. Starch digestion,

large-bowel fermentation and intestinal mucosal cell proliferation in rats treated with the α-glucosidase inhibitor

acarbose. Br J Nutr. 2004;91:357–65.

61. Weaver GA, Tangel CT, Krause JA, Parfitt MM, Jenkins

PL, Rader JM, et al. Acarbose enhances human colonic

butyrate production. J Nutr. 1997;127:717–23.

62. Weaver GA, Tangel CT, Krause JA, Parfitt MM, Stragand JJ, Jenkins PL, et al. Biomarkers of human

colonic cell growth are influenced differently by a history of colonic neoplasia and the consumption of acarbose. J Nutr. 2000;130:2718–25.

63. Nagata N, Nishijima S, Miyoshi-Akiyama T, Kojima

Y, Kimura M, Aoki R, et al. Population-level metagenomics uncovers distinct effects of multiple medications on the human gut microbiome. Gastroenterology.

2022;163:1038–52.

64. Smith BJ, Miller RA, Ericsson AC, Harrison DC,

Strong R, Schmidt TM. Changes in the gut microbiome

and fermentation products concurrent with enhanced

longevity in acarbose-treated mice. BMC Microbiol.

2019;19:130.

65. Zhang X, Fang Z, Zhang C, Xia H, Jie Z, Han X, et al.

Effects of acarbose on the gut microbiota of prediabetic

patients: a randomized, double-blind, controlled crossover trial. Diabetes Therapy. 2017;8:293–307.

66. Scheen AJ. An update on the safety of SGLT2 inhibitors.

Expert Opin Drug Saf. 2019;18:295–311.

67 McGill JB, Subramanian S. Safety of sodium-glucose cotransporter 2 inhibitors. Am J Med. 2019;132:S49-S575.e5.

68. Kalra S. Sodium Glucose Co-Transporter-2 (SGLT2)

Inhibitors: a review of their basic and clinical pharmacology. Diabetes Ther. 2014;5:355–66.

69. Lee PC, Ganguly S, Goh S-Y. Weight loss associated

with sodium-glucose cotransporter-2 inhibition: a review

of evidence and underlying mechanisms. Obes Rev.

2018;19:1630–41.

70. Ho H, Kikuchi K, Oikawa D, Watanabe S, Kanemitsu

Y,Saigusa D, et al. SGLT‐1‐specific inhibition ameliorates renal failure andalters the gut microbial community

in mice with adenine‐induced renal failure.Physiol Rep.

2021;9:15092.

71. Deng L, Yang Y, Xu G. Empagliflozin ameliorates type 2

diabetes mellitus-related diabetic nephropathy via altering the gut microbiota. Biochim Biophys Acta (BBA) Molec Cell Biol Lipids. 2022;1867:159234.

72. Mishima E, Fukuda S, Kanemitsu Y, Saigusa D, Mukawa

C, Asaji K, et al. Canagliflozin reduces plasma uremic

toxins and alters the intestinal microbiota composition

in a chronic kidney disease mouse model. Am J PhysiolRenal Physiol. 2018;315:F824–33.

73. Konikoff T, Gophna U. Oscillospira : a central, enigmatic

component of the human gut microbiota. Trends Microbiol. 2016;24:523–4.

74. Deng X, Zhang C, Wang P, Wei W, Shi X, Wang P, et al.

Cardiovascular benefits of empagliflozin are associated

with gut microbiota and plasma metabolites in type 2

diabetes. J Clin Endocrinol Metab. 2022;107:1888–96.

75. Anderson JW, Nicolosi RJ, Borzelleca JF. Glucosamine effects in humans: a review of effects on glucose

Vol:. (1234567890)

13

GeroScience (2023) 45:3475–3490

metabolism, side effects, safety considerations and efficacy. Food Chem Toxicol. 2005;43:187–201.

76. Hathcock JN, Shao A. Risk assessment for glucosamine and chondroitin sulfate. Regul Toxicol Pharmacol.

2007;47:78–83.

77. Dalirfardouei R, Karimi G, Jamialahmadi K. Molecular

mechanisms and biomedical applications of glucosamine

as a potential multifunctional therapeutic agent. Life Sci.

2016;152:21–9.

78. Shintani T, Yamazaki F, Katoh T, Umekawa M, Matahira Y, Hori S, et al. Glucosamine induces autophagy

via anmTOR-independent pathway. Biochem Biophys

Res Commun. 2010;391:1775–9.

79. Shintani T, Kosuge Y, Ashida H. Glucosamine

extends the lifespan of caenorhabditis elegans via

autophagy induction glucosamine extends nematode

lifespan via autophagy induction. J Appl Glycosci.

1999;2018(65):37–43.

80. Shintani H, Ashida H, Shintani T. Shifting the focus

of D-glucosamine from a dietary supplement for knee

osteoarthritis to a potential anti-aging drug. Human

Nutr Metab. 2021;26: 200134.

81. Yoon SY, Narayan VP. Genetically predicted glucosamine and longevity: a Mendelian randomization study.

Clin Nutr ESPEN. 2022;49:556–9.

82. Setnikar I, Rovati L. Absorption, distribution, metabolism and excretion of glucosamine sulfate. Arzneimittelforschung. 2011;51:699–725.

83. Yuan X, Zheng J, Ren L, Jiao S, Feng C, Du Y, etal.

Glucosamine ameliorates symptoms of high-fat dietfed mice by reversingimbalanced gut microbiota. Front

Pharmacol. 2021;12:694107.

84 Tamanai-Shacoori Z, Smida I, Bousarghin L, Loreal O,

Meuric V, Fong SB, et al. Roseburia spp.: a marker of

health? Future Microbiol. 2017;12:157–70.

85. Finegold SM. Desulfovibrio species are potentially

important in regressive autism. Med Hypotheses.

2011;77:270–4.

86. Murros KE, Huynh VA, Takala TM, Saris PEJ.Desulfovibrio bacteria are associated with Parkinson’s disease.

Front CellInfect Microbiol. 2021;11:652617.

87. Berry D, Reinisch W. Intestinal microbiota: a source of

novel biomarkers in inflammatory bowel diseases? Best

Pract Res Clin Gastroenterol. 2013;27:47–58.

88. Moon JM, Finnegan P, Stecker RA, Lee H, Ratliff KM,

Jäger R, et al. Impact of glucosamine supplementation

on gut health. Nutrients. 2021;13:2180.

89. Hossain A, Yamaguchi F, Matsuo T, Tsukamoto I, Toyoda Y, Ogawa M, et al. Rare sugar D-allulose: potential role and therapeutic monitoring in maintaining

obesity and type 2 diabetes mellitus. Pharmacol Ther.

2015;155:49–59.

90. Han Y, Choi BR, Kim SY, Kim S-B, Kim YH, Kwon

E-Y,et al. Gastrointestinal tolerance of D-allulose in

healthy and young adults. Anon-randomized controlled

trial. Nutrients. 2018;10:2010.

91. Shintani T, Yamada T, Hayashi N, Iida T, Nagata Y,

Ozaki N, et al. Rare sugar syrup containing D-allulose but not high-fructosecorn syrup maintains glucose tolerance and insulin sensitivity partly viahepatic

GeroScience (2023) 45:3475–3490 glucokinase translocation in wistar rats. J Agric Food

Chem. 2017;65:2888–94.

92. Shintani T, Sakoguchi H, Yoshihara A, Izumori K,

Sato M. D-Allulose, a stereoisomer of D-fructose,

extends Caenorhabditis elegans lifespan through a

dietary restriction mechanism: a new candidate dietary

restriction mimetic. Biochem Biophys Res Commun.

2017;493:1528–33. http://​linki​nghub.​elsev​ier.​com/​retri​

eve/​pii/​S0006​291X1​73192​89.

93. Iida T, Hayashi N, Yamada T, YoshikawaY, Miyazato

S, Kishimoto Y, et al. Failure of d-psicose absorbed in

the smallintestine to metabolize into energy and its low

large intestinal fermentabilityin humans. Metabolism.

2010;59:206–14.

94. Han Y, Park H, Choi B-R, Ji Y, Kwon E-Y, Choi M-S.

Alteration of microbiome profile by D-allulose in amelioration of high-fat-diet-induced obesity in mice. Nutrients. 2020;12:352.

95. Liu P, Wang Y, Yang G, Zhang Q, Meng L, Xin Y, et al.

The role of short-chain fatty acids in intestinal barrier

function, inflammation, oxidative stress, and colonic carcinogenesis. Pharmacol Res. 2021;165: 105420.

96. Han Y, Yoon J, Choi M. Tracing the anti-inflammatory mechanism/triggers of D-allulose: a profile

study of microbiome composition and mRNA expression in diet-induced obese mice. Mol Nutr Food Res.

2020;64:1900982.

97. Shimonaka A, Yamaji T, Dobashi H, Kitamura N, Iida

T. Composition for promoting proliferation of genus coprococcus bacterium [Internet]. Japan; 2018 [cited 2022

Nov 6]. https://​paten​ts.​google.​com/​patent/​JP202​00746​

95A/​en.

98. Liu X, Mao B, Gu J, Wu J, Cui S, Wang G, etal. Blautia —a new functional genus with potential probioticproperties? Gut Microbes. 2021;13:1–21.

99. Shintani H, Shintani T, Sato M, Sato. D-Allose M.DAllose, a trace component in human serum, and its

pharmaceuticalapplicability Citation. Its Pharmaceutical Applicability. Int J Appl Biol PharmTechnol.

2020;11:200–13.

100. Lim Y-R, Oh D-K. Microbial metabolism and biotechnological production of d-allose. Appl Microbiol

Biotechnol. 2011;91:229–35. https://​doi.​org/​10.​1007/​

s00253-​011-​3370-8.

101. Chen Z, Chen J, Zhang W, Zhang T, Guang C, Mu W.

Recent research on the physiological functions, applications, andbiotechnological production of d-allose. Appl

Microbiol Biotechnol. 2018;102:4269–78.

102. Tomoya S, Kazuhiro O, Hirofumi S, Masashi S. Rare

sugars D-psicose and D-allose as calorie restriction

mimetic-anti-metabolic syndrome effects and anti-aging

effects. J Brewing Soc Jpn. 2013;108:565–74.

103. Shintani T, Sakoguchi H, Yoshihara A, Izumori K, Sato

M. D-Allose, a stereoisomer of d-glucose, extends the

lifespan of Caenorhabditis elegans via sirtuin and insulin signaling. J Appl Glycosci (1999). 2019;66:139–42.

https://​www.​jstage.​jst.​go.​jp/​artic​le/​jag/​66/4/​66_​jag.​JAG-​

2019_​0010/_​artic​le.

104. Iga Y, Matsuo T. D-Allose metabolism in rats. Nippon

Eiyo Shokuryo Gakkaishi. 2010;63:17–9.

3489

105. Kitagawa M, Tanaka M, Yoshikawa Y, Iida T, Kishimoto

Y. Evaluation of ABSORPTION and fermentability of

D-mannose, D-sorbose, and D-allose in humans. Luminacoids Res. 2018;22:75–82.

106. Shintani T, Yanai S, Kanasaki A, Tanaka M, Iida T,

Ozawa G, et al. Long-term D-allose administration

favorably alters the intestinal environment in aged male

mice. J Appl Glycosci (1999) [Internet]. 2022;jag.JAG2022_0005. https://​www.​jstage.​jst.​go.​jp/​artic​le/​jag/​

advpub/​0/​advpub_​jag.​JAG-​2022_​0005/_​artic​le.

107. Guba M, von Breitenbuch P, Steinbauer M, Koehl G,

Flegel S, Hornung M, et al. Rapamycin inhibits primary and metastatic tumor growth by antiangiogenesis:

involvement of vascular endothelial growth factor. Nat

Med. 2002;8:128–35.

108. McCormack FX, Inoue Y, Moss J, Singer LG, Strange

C, Nakata K, et al. Efficacy and safety of sirolimus in lymphangioleiomyomatosis. N Engl J Med.

2011;364:1595–606.

109. Lamming DW, Ye L, Sabatini DM, Baur JA. Rapalogs

and mTOR inhibitors as anti-aging therapeutics. J Clin

Investig. 2013;123:980–9.

110. Harrison DE, Strong R, Sharp ZD, Nelson JF, Astle

CM, Flurkey K, et al. Rapamycin fed late in life

extends lifespan in genetically heterogeneous mice.

Nature. 2009;460:392–5.

111. Bitto A, Ito TK, Pineda V v, LeTexier NJ, Huang

HZ,Sutlief E, et al. Transient rapamycin treatment can

increase lifespan andhealthspan in middle-aged mice.

Elife. 2016;5:e16351.

112. Jung M-J, Lee J, Shin N-R, Kim M-S, Hyun D-W, Yun

J-H, et al. Chronic repression of mTOR complex 2

Induces changes in the gut microbiota of diet-induced

obese mice. Sci Rep. 2016;6:30887.

113. Siemann EH, Creasy LL. Concentration of the

phytoalexin resveratrol in wine. Am J Enol Vitic.

1992;43:49. http://​www.​ajevo​nline.​org/​conte​nt/​43/1/​

49.​abstr​act.

114. Shaito A, Posadino AM, Younes N, Hasan H, Halabi

S,Alhababi D, et al. Potential adverse effects of resveratrol: a literaturereview. Int J Mol Sci. 2020;21:2084.

115. de Ligt M, Timmers S, Schrauwen P. Resveratrol and

obesity: Can resveratrol relieve metabolic disturbances? Biochim Biophys Acta (BBA) - Molec Basis

Dis 2015;1852:1137–44.

116. Pan Y, Zhang H, Zheng Y, Zhou J, Yuan J, Yu Y,

et al. resveratrol exerts antioxidant effects by activating SIRT2 to deacetylate Prx1. Biochemistry.

2017;56:6325–8.

117. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C,

Kalra A, et al. Resveratrol improves health and survival

of mice on a high-calorie diet. Nature. 2006;444:337–42.

118. da Luz PL, Tanaka L, Brum PC, Dourado PMM,

Favarato D, Krieger JE, et al. Red wine and equivalent

oral pharmacological doses of resveratrol delay vascular

aging but do not extend life span in rats. Atherosclerosis.

2012;224:136–42.

119. Wang P, Li D, Ke W, Liang D, Hu X, Chen F. Resveratrol-induced gut microbiota reduces obesity in high-fat

diet-fed mice. Int J Obes. 2020;44:213–25.

Vol.: (0123456789)

13

3490

120. Chen M, Yi L, Zhang Y, Zhou X, Ran L, Yang J, etal. Resveratrol attenuates trimethylamine- N -oxide(TMAO)induced atherosclerosis by regulating TMAO synthesis and bile acidmetabolism via remodeling of the gut

microbiota. mBio. 2016;7:e02210-15.

121. Pegg AE, McCann PP. Polyamine metabolism and function. Am J Physiol-Cell Physiol. 1982;243:C212–21.

122. Schwarz C, Stekovic S, Wirth M, Benson G, Royer P,

Sigrist SJ, et al. Safety and tolerability of spermidine

supplementation in mice and older adults with subjective

cognitive decline. Aging. 2018;10:19–33.

123. Childs AC, Mehta DJ, Gerner EW. Polyamine-dependent

gene expression. Cell Mol Life Sci. 2003;60:1394–406.

124. Eisenberg T, Abdellatif M, Schroeder S, Primessnig U,

Stekovic S, Pendl T, et al. Cardioprotection and lifespan

extension by the natural polyamine spermidine. Nat Med.

2016;22:1428–38.

125. Eisenberg T, Knauer H, Schauer A, Büttner S, Ruckenstuhl C, Carmona-Gutierrez D, et al. Induction of

autophagy by spermidine promotes longevity. Nat Cell

Biol. 2009;11:1305–14.

126. Matsumoto M, Kurihara S, Kibe R, Ashida H, Benno Y.

Longevity in mice is promoted by probiotic-induced suppression of colonic senescence dependent on upregulation of gut bacterial polyamine production. PLoS ONE.

2011;6: e23652.

127. Kibe R, Kurihara S, Sakai Y, Suzuki H, Ooga T, Sawaki

E, et al. Upregulation of colonic luminal polyamines

produced by intestinal microbiota delays senescence in

mice. Sci Rep. 2015;4:4548.

128. Swanson KS, Gibson GR, Hutkins R, Reimer RA, Reid

G, Verbeke K, et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus

statement on the definition and scope of synbiotics. Nat

Rev Gastroenterol Hepatol. 2020;17:687–701.

129. Ma L, Ni Y, Wang Z, Tu W, Ni L, Zhuge F, et al. Spermidine improves gut barrier integrity and gut microbiota

function in diet-induced obese mice. Gut Microbes.

2020;12:1832857.

130. Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano G, Gasbarrini A, et al. What is the healthy gut

microbiota composition? A changing ecosystem across

age, environment, diet, and diseases. Microorganisms.

2019;7:14.

131. Round JL, Mazmanian SK. The gut microbiota shapes

intestinal immune responses during health and disease.

Nat Rev Immunol. 2009;9:313–23.

132. Gibson GR, Hutkins R, Sanders ME, Prescott SL,

Reimer RA, Salminen SJ, et al. Expert consensus document: the International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the

definition and scope of prebiotics. Nat Rev Gastroenterol

Hepatol. 2017;14:491–502.

Vol:. (1234567890)

13

GeroScience (2023) 45:3475–3490

133. Roberfroid M, Gibson GR, Hoyles L, McCartney AL,

Rastall R, Rowland I, et al. Prebiotic effects: metabolic

and health benefits. Br J Nutr. 2010;104:S1-63.

134. Lordan C, Thapa D, Ross RP, Cotter PD. Potential for

enriching next-generation health-promoting gut bacteria

through prebiotics and other dietary components. Gut

Microbes. 2020;11:1–20.

135. Salosensaari A, Laitinen V, Havulinna AS, Meric G,

Cheng S, Perola M, et al. Taxonomic signatures of causespecific mortality risk in human gut microbiome. Nat

Commun. 2021;12:2671.

136. Wilmanski T, Diener C, Rappaport N, Patwardhan S,

Wiedrick J, Lapidus J, et al. Gut microbiome pattern

reflects healthy ageing and predicts survival in humans.

Nat Metab. 2021;3:274–86.

137. Li Z-H, Gao X, Chung VC, Zhong W-F, Fu Q, Lv Y-B,

et al. Associations of regular glucosamine use with allcause and cause-specific mortality: a large prospective

cohort study. Ann Rheum Dis. 2020;79:829–36.

138. Pocobelli G, Kristal AR, Patterson RE, Potter JD, Lampe

JW, Kolar A, et al. Total mortality risk in relation to use

of less-common dietary supplements. Am J Clin Nutr.

2010;91:1791–800.

https://​doi.​org/​10.​3945/​ajcn.​2009.​

28639.

139. Kobayashi R, Nagaoka K, Nishimura N, Koike

S,Takahashi E, Niimi K, et al. Comparison of the fecal

microbiota of twomonogastric herbivorous and five

omnivorous mammals. Animal Sci J. 2020;91:e13366.

140. Nguyen TLA, Vieira-Silva S, Liston A, Raes J. How

informative is the mouse for human gut microbiota

research? Dis Model Mech. 2015;8:1–16.

141. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen

Y-Y, Keilbaugh SA, et al. Linking long-term dietary

patterns with gut microbial enterotypes. Science.

1979;2011(334):105–8.

142. Vandeputte D, Kathagen G, D’hoe K, Vieira-Silva S,

Valles-Colomer M, Sabino J, et al. Quantitative microbiome profiling links gut community variation to microbial

load. Nature. 2017;551:507–11.

143. Hoshi N, Inoue J, Sasaki D, Sasaki K. The Kobe University Human Intestinal Microbiota Model for gut

intervention studies. Appl Microbiol Biotechnol.

2021;105:2625–32.

144. Li C, Zhang X. Current in vitro and animal models for

understanding foods: human gut–microbiota interactions.

J Agric Food Chem. 2022;70:12733–45.

Publisher’s Note Springer Nature remains neutral with regard

to jurisdictional claims in published maps and institutional

affiliations.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る