リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The therapeutic potential of multiclonal tumoricidal T cells derived from tumor infiltrating lymphocyte-derived iPS cells」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The therapeutic potential of multiclonal tumoricidal T cells derived from tumor infiltrating lymphocyte-derived iPS cells

Ito, Takeshi 京都大学 DOI:10.14989/doctor.k23422

2021.07.26

概要

背景
腫瘍浸潤リンパ球(tumor infiltrating lymphocytes:TIL)は腫瘍抗原特異的リンパ球を高頻度に含み、抗原量の多い癌腫に対する養子細胞移注療法に用いられてきた。移注される細胞の質および量は、治療効果と相関することが報告されており、大量の腫瘍特異的リンパ球をless differentiated状態で準備することが重要とされる。しかしながら、TILは既に分化段階が進み、老化状態にあることが多いため、理想的な細胞調整は課題とされてきた。その問題点への解決手段として、iPS細胞を介したTリンパ球再生技術の応用が想起された。本研究では、腫瘍特異的リンパ球を再生すると共に、複数抗原を標的にしたマルチクローナル状態での再生を試みた。

結果
ヒト大腸癌の原発巣よりTILを採取すると同時に、自己由来スフェロイドを樹立した。サイトカインカクテルによるTIL増幅工程の後に、癌スフェロイドとの共培養によって腫瘍反応性TI-CTL(tumor-infiltrating cytotoxic T lymphocytes)を選択増幅した。癌スフェロイドに対し、TCR-HLA class I axis依存的な反応を示すTI-CTLについて、TCR Vβサブタイプ毎にクローン化した。Vβ毎にクローン化された腫瘍特異的TI-CTLよりiPS細胞を樹立し、続いてfeederfree法でT細胞を再生した(TIL-iPS-T)。TIL-iPS-TにおいてTCRの追加再編成は見られず、親クローンと同様の腫瘍反応性が確認された。再生に伴って増殖能は有意な改善を示し、腫瘍傷害活性はDNA mismatch repair proficient(MMR-P)症例で増強されていた。上乗せされた腫瘍傷害活性は、HLA非依存的機序によってもたらされ、NK様活性の関与が示唆された。メモリーT細胞に関する表面抗原や転写因子の発現プロファイル、サイトカイン分泌パターンなどから、TIL-iPS-Tは親クローンと比してless differentiated状態にあると判断された。更にテロメアの伸張、アポトーシス耐性能の向上もTIL-iPS-Tにおいて確認された。癌スフェロイドを皮下移植した担癌マウス(patient derived spheroids xenograft: PDSX)を用いた治療モデルでは、TIL-iPS-Tの治療効果は限定的であった。細胞移注プロトコールの改良の後に、経静脈投与下での体内動体を確認したところ、TIL-iPS-Tの腫瘍実質内浸潤が確認され、更に有意なin vivo persistency延長も確認された。

考察
本研究により、ヒト大腸癌より複数クローンの腫瘍特異的TI-CTL選択が可能であることが示された。加えて、選択された腫瘍特異的TI-CTLより、iPS細胞を介したマルチクローナルなTIL-iPS-T再生が可能であることも示された。再生に伴ってTILは若返り、persistency向上が賦与されたものの、PDSXマウスを用いたin vivoモデルでは治療効果が限定的であった。PDSXマウスの最適化、細胞治療評価モデルとして有用性検証が今後の課題として挙げられた。同時に遺伝子編集によるTIL-iPS-Tの機能増強、免疫チェックポイント阻害剤などとの併用療法についても、引き続き検討が必要である。

この論文で使われている画像

参考文献

1. Alexandrov, L. B., Nik-Zainal, S., Wedge, D. C. & Aparicio, S. A. J. R. Signatures of mutational processes in human cancer. Nature 500, 415–421 (2013).

2. Hause, R. J., Pritchard, C. C., Shendure, J. & Salipante, S. J. Classification and characterization of microsatellite instability across 18 cancer types. Nat. Med. 22, 1342–1350 (2016).

3. Yarchoan, M., Johnson, B. A., Lutz, E. R., Laheru, D. A. & Jaffee, E. M. Targeting neoantigens to augment antitumour immunity. Nat. Rev. Cancer 17, 209–222 (2017).

4. Yarchoan, M., Hopkins, A. & Jaffee, E. M. Tumor mutational burden and response rate to PD-1 inhibition. N. Engl. J. Med. 377, 2500–2501 (2017).

5. Le, D. T. et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science (80-. ). 357, 409–413 (2017).

6. Lemery, S., Keegan, P. & Pazdur, R. First FDA Approval Agnostic of Cancer Site — When a Biomarker Defines the Indication. N. Engl. J. Med. 337, 1409– 1412 (2017).

7. Lauss, M. et al. Mutational and putative neoantigen load predict clinical benefit of adoptive T cell therapy in melanoma. Nat. Commun. 8, 1–11 (2017).

8. Rosenberg, S. A., Spiess, P. & Lafreniere, R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science (80-. ). 233, 1318–1321 (1986).

9. Topalian, S. L., Muul, L. M., Solomon, D. & Rosenberg, S. A. Expansion of human tumor infiltrating lymphocytes for use in immunotherapy trials. J. Immunol. Methods 102, 127–141 (1987).

10. Rosenberg, S. A. et al. Use of Tumor-Infiltrating Lymphocytes and Interleukin-2 in the Immunotherapy of Patients with Metastatic Melanoma. N. Engl. J. Med. 319, 1676–1680 (1988).

11. Dudley, M. E., Wunderlich, J. R., Shelton, T. E., Even, J. & Rosenberg, S. A. Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. J. Immunother. 26, 332–42 (2008).

12. Dudley, M. E. et al. Adoptive cell transfer therapy following non-myeloablative but lymphodepleting chemotherapy for the treatment of patients with refractory metastatic melanoma. J. Clin. Oncol. 23, 2346–2357 (2005).

13. Dudley, M. E. et al. Adoptive Cell Therapy for Patients With Metastatic Melanoma : Evaluation of Intensive Myeloablative Chemoradiation Preparative Regimens. J. Clin. Oncol. 26, 5233–5239 (2008).

14. Besser, M. J. et al. Clinical responses in a phase II study using adoptive transfer of short-term cultured tumor infiltration lymphocytes in metastatic melanoma patients. Clin. Cancer Res. 16, 2646–2655 (2010).

15. Rosenberg, S. A. et al. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin. Cancer Res. 17, 4550–4557 (2011).

16. Radvanyi, L. G. et al. Specific lymphocyte subsets predict response to adoptive cell therapy using expanded autologous tumor-infiltrating lymphocytes in metastatic melanoma patients. Clin. Cancer Res. 18, 6758–6770 (2012).

17. Besser, M. J. et al. Adoptive transfer of tumor-infiltrating lymphocytes in patients with metastatic melanoma: Intent-to-treat analysis and efficacy after failure to prior immunotherapies. Clin. Cancer Res. 19, 4792–4800 (2013).

18. Goff, S. L. et al. Randomized, prospective evaluation comparing intensity of lymphodepletion before adoptive transfer of tumor-infiltrating lymphocytes for patients with metastatic melanoma. J. Clin. Oncol. 34, 2389–2397 (2016).

19. Andersen, R. et al. Long-Lasting complete responses in patients with metastatic melanoma after adoptive cell therapy with tumor-infiltrating lymphocytes and an attenuated IL2 regimen. Clin. Cancer Res. 22, 3734–3745 (2016).

20. Tran, E. et al. Cancer Immunotherapy Based on Mutation-Specific CD4+ T Cells in a Patient with Epithelial Cancer. Science (80-. ). 344, 641–646 (2014).

21. Tran, E. et al. T-Cell Transfer Therapy Targeting Mutant KRAS in Cancer. N. Engl. J. Med. 375, 2255–2262 (2016).

22. Stevanović, S. et al. Landscape of immunogenic tumor antigens in successful immunotherapy of virally induced epithelial cancer. Science (80-. ). 356, 200– 205 (2017).

23. Zacharakis, N. et al. Immune recognition of somatic mutations leading to complete durable regression in metastatic breast cancer. Nat. Med. 24, 724–730 (2018).

24. Dafni, U. et al. Efficacy of adoptive therapy with tumor-infiltrating lymphocytes and recombinant interleukin-2 in advanced cutaneous melanoma: A systematic review and meta-analysis. Annals of Oncology vol. 30 1902–1913 (2019).

25. Itzhaki, O. et al. Establishment and large-scale expansion of minimally cultured ‘young’ tumor infiltrating lymphocytes for adoptive transfer therapy. J. Immunother. 34, 212–220 (2011).

26. Robbins, P. F. et al. Cutting Edge: Persistence of Transferred Lymphocyte Clonotypes Correlates with Cancer Regression in Patients Receiving Cell Transfer Therapy. J. Immunol. 173, 7125–7130 (2004).

27. Dudley, M. E. et al. CD8+ enriched ‘Young’ tumor infiltrating lymphocytes can mediate regression of metastatic melanoma. Clin. Cancer Res. 16, 6122–6131 (2010).

28. Zhou, J. et al. Telomere Length of Transferred Lymphocytes Correlates with In Vivo Persistence and Tumor Regression in Melanoma Patients Receiving Cell Transfer Therapy. J. Immunol. 175, 7046–7052 (2005).

29. Butler, M. O. et al. Establishment of antitumor memory in humans using in vitro- educated CD8+ T cells. Sci. Transl. Med. 3, (2011).

30. Crompton, J. G. et al. Akt inhibition enhances expansion of potent tumor-specific lymphocytes with memory cell characteristics. Cancer Res. 75, 296–305 (2015).

31. Takahashi, K. & Yamanaka, S. Induction of Pluripotent Stem Cells from Mouse Embryonic and Adult Fibroblast Cultures by Defined Factors. Cell 126, 663–676 (2006).

32. Takahashi, K. et al. Induction of Pluripotent Stem Cells from Adult Human Fibroblasts by Defined Factors. Cell 131, 861–872 (2007).

33. Seki, T. et al. Generation of induced pluripotent stem cells from human terminally differentiated circulating t cells. Cell Stem Cell 7, 11–13 (2010).

34. Loh, Y. H. et al. Reprogramming of T cells from human peripheral blood. Cell Stem Cell 7, 15–19 (2010).

35. Staerk, J. et al. Reprogramming of human peripheral blood cells to induced pluripotent stem cells. Cell Stem Cell 7, 20–24 (2010).

36. Seki, T., Yuasa, S. & Fukuda, K. Generation of induced pluripotent stem cells from a small amount of human peripheral blood using a combination of activated T cells and Sendai virus. Nat. Protoc. 7, 718–728 (2012).

37. Vizcardo, R. et al. Regeneration of human tumor antigen-specific T cells from iPSCs derived from mature CD8+ T cells. Cell Stem Cell 12, 31–36 (2013).

38. Nishimura, T. et al. Generation of rejuvenated antigen-specific T cells by reprogramming to pluripotency and redifferentiation. Cell Stem Cell 12, 114–126 (2013).

39. Miyoshi, H. & Stappenbeck, T. S. In vitro expansion and genetic modification of gastrointestinal stem cells in spheroid culture. Nat. Protoc. 8, 2471–2482 (2013).

40. Miyoshi, H. et al. An improved method for culturing patient-derived colorectal cancer spheroids. Oncotarget 9, 21950–21964 (2018).

41. Turcotte, S. et al. Phenotype and Function of T Cells Infiltrating Visceral Metastases from Gastrointestinal Cancers and Melanoma: Implications for Adoptive Cell Transfer Therapy. J. Immunol. 191, 2217–2225 (2013).

42. Hall, M. L. et al. Expansion of tumor-infiltrating lymphocytes (TIL) from human pancreatic tumors. J. Immunother. Cancer 4, 1–12 (2016).

43. Lee, H. J. et al. Expansion of tumor-infiltrating lymphocytes and their potential for application as adoptive cell transfer therapy in human breast cancer. Oncotarget 8, 113345–113359 (2017).

44. Savas, P. et al. Single-cell profiling of breast cancer T cells reveals a tissue- resident memory subset associated with improved prognosis. Nat. Med. 24, (2018).

45. Datar, I. et al. Expression analysis and significance of PD-1, LAG-3, and TIM-3 in human non-small cell lung cancer using spatially resolved and multiparametric single-cell analysis. Clin. Cancer Res. 25, 4663–4673 (2019).

46. Friese, C. et al. CTLA-4 blockade boosts the expansion of tumor-reactive CD8+ tumor-infiltrating lymphocytes in ovarian cancer. Sci. Rep. 10, 1–12 (2020).

47. Rosenberg, S. A. et al. Treatment of patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and interleukin 2. J. Natl. Cancer Inst. 86, 1159–1166 (1994).

48. Santegoets, S. J. A. M. et al. IL-21 promotes the expansion of CD27+CD28+ tumor infiltrating lymphocytes with high cytotoxic potential and low collateral expansion of regulatory T cells. J. Transl. Med. 11, 1–10 (2013).

49. Liu, Z. et al. Tumor-infiltrating lymphocytes (TILs) from patients with glioma. Oncoimmunology 6, (2017).

50. Tavera, R. J. et al. Utilizing T-cell Activation Signals 1, 2, and 3 for Tumor- infiltrating Lymphocytes (TIL) Expansion: The Advantage over the Sole Use of Interleukin-2 in Cutaneous and Uveal Melanoma. J. Immunother. 41, 399–405 (2018).

51. Simoni, Y. et al. Bystander CD8+ T cells are abundant and phenotypically distinct in human tumour infiltrates. Nature (2018) doi:10.1038/s41586-018- 0130-2.

52. Scheper, W. et al. Low and variable tumor reactivity of the intratumoral TCR repertoire in human cancers. Nat. Med. 25, 89–94 (2019).

53. Ahmadzadeh, M. et al. Tumor antigen-specific CD8 T cells infiltrating the tumor express high levels of PD-1 and are functionally impaired. Blood 114, 1537–1544 (2009).

54. Ye, Q. et al. CD137 accurately identifies and enriches for naturally occurring tumor-reactive T cells in tumor. Clin. Cancer Res. 20, 44–55 (2014).

55. Betts, M. R. et al. Sensitive and viable identification of antigen-specific CD8+ T cells by a flow cytometric assay for degranulation. J. Immunol. Methods 281, 65– 78 (2003).

56. Wolfl, M. et al. Activation-induced expression of CD137 permits detection, isolation, and expansion of the full repertoire of CD8+ T cells responding to antigen without requiring knowledge of epitope specificities. Blood 110, 201–210 (2007).

57. Saito, H., Okita, K., Chang, A. E. & Ito, F. Adoptive transfer of CD8+ T cells generated from induced pluripotent stem cells triggers regressions of large tumors along with immunological memory. Cancer Res. 76, 3473–3483 (2016).

58. Maeda, T. et al. Regeneration of CD8αβ T cells from T-cell-derived iPSC imparts potent tumor antigen-specific cytotoxicity. Cancer Res. 76, 6839–6850 (2016).

59. Minagawa, A. et al. Enhancing T Cell Receptor Stability in Rejuvenated iPSC- Derived T Cells Improves Their Use in Cancer Immunotherapy. Cell Stem Cell 23, 850-858.e4 (2018).

60. Saito, H. et al. Reprogramming of melanoma tumor-infiltrating lymphocytes to induced pluripotent stem cells. Stem Cells Int. 2016, (2016).

61. Yasui, Y., Hitoshi, Y. & Kaneko, S. In Vitro Differentiation of T Cell: From Human iPS Cells in Feeder-Free Condition. Methods Mol. Biol. 2048, 77–80 (2019).

62. Iriguchi, S. et al. A clinically applicable and scalable method to regenerate T- cells from iPSCs for off-the-shelf T-cell immunotherapy. Nat. Commun. 12, 1–15 (2021).

63. Ueda, N. et al. Generation of TCR-Expressing Innate Lymphoid-like Helper Cells that Induce Cytotoxic T Cell-Mediated Anti-leukemic Cell Response. Stem Cell Reports 10, 1935–1946 (2018).

64. Menk, A. V. et al. 4-1BB costimulation induces T cell mitochondrial function and biogenesis enabling cancer immunotherapeutic responses. J. Exp. Med. 215, jem.20171068 (2018).

65. Tran, E. et al. Immunogenicity of somatic mutations in human gastrointestinal cancers. Science (80-. ). 350, 1387–1391 (2015).

66. Chatani, P. D. & Yang, J. C. Mutated RaS: Targeting the “untargetable” with T cells. Clin. Cancer Res. 26, 537–544 (2020).

67. Dijkstra, K. K. et al. Generation of Tumor-Reactive T Cells by Co-culture of Peripheral Blood Lymphocytes and Tumor Organoids. Cell 0, 1–13 (2018).

68. Miyazaki, K. et al. The transcription factor E2A activates multiple enhancers that drive Rag expression in developing T and B cells. Sci. Immunol. 5, (2020).

69. Maekawa, H. et al. A chemosensitivity study of colorectal cancer using xenografts of patient-derived tumor-initiating cells. Mol. Cancer Ther. 17, 2187– 2196 (2018).

70. Etxeberria, I. et al. Intratumor Adoptive Transfer of IL-12 mRNA Transiently Engineered Antitumor CD8+ T Cells. Cancer Cell 36, 613–629 (2019).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る