リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Identification of T cell receptors targeting a neoantigen derived from recurrently mutated FGFR3」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Identification of T cell receptors targeting a neoantigen derived from recurrently mutated FGFR3

Tate, Tomohiro 京都大学 DOI:10.14989/doctor.k24803

2023.05.23

概要

In addition to surgery, chemotherapy, and radiotherapy, immunotherapy now plays
a critical role in cancer management. Immune checkpoint inhibitors (ICIs), such as
antibodies against programmed death-1 (PD-1), PD-1 ligand (PD-L1), and cytotoxic T
lymphocyte-associated antigen 4 (CTLA-4), have considerably improved the prognosis
of patients with various types of cancer, especially in cancers with "inflamed" tumors
characterized by high immune cell infiltration, high PD-L1 expression, and high mutation
burden [1–3]. However, clinical responses to ICIs have been limited to only 10%–40% of
patients, and most patients experienced little or no clinical benefit. For patients not responding to ICIs due to low immune cell infiltration, a cancer vaccine or adoptive cell therapies
are promising approaches to increase or induce active cancer-reactive T cells. Neoantigens,
antigens derived from mutated proteins generated by somatic mutations in cancer cells,
are thought to be good targets for immunotherapies because of their high specificity to
tumor cells.
To facilitate neoantigen-targeting immunotherapies, we have established pipelines to
predict neoantigens from patients’ genome sequencing data to identify neoantigen-specific
T cells and T cell receptors (TCRs), and to generate neoantigen-specific TCR-engineered
T cells [4–8]. Because neoantigens are not often shared among multiple cancer patients,
the personalized selection of appropriate target neoantigens for individual patients is
required. Recently, several reports demonstrated that "shared neoantigens", referring to
mutated antigens commonly detected in a subset of cancer patients, were targeted by
tumor-infiltrating T lymphocytes (TILs) [9–11]. Therefore, shared neoantigens could be
broadly applicable targets for immunotherapies in different types of cancer. However,
information about whether shared neoantigens can induce their specific cytotoxic T cells
is still very limited. One of the first reports of shared neoantigens is that T cells reactive
to KRAS G12D-derived peptide presented on human leukocyte antigen (HLA)-C*08:02
were identified in TILs from a pancreatic cancer patient [10]. They observed objective
regression of lung metastases after the infusion of TILs composed of T cell clones that
specifically targeted KRAS G12D [12] or TCR-engineered T cells targeting KRAS G12D on
HLA-C*08:02 [13]. However, targetable patients by this KRAS G12D shard neoantigen were
limited due to the low frequency of the HLA-C*08:02 allele. Shared neoantigens derived
from TP53 hotspot mutations have also been identified, including R175H (presented on
HLA-A*02:01), Y202C (HLA-A*02:01), and R248W (HLA-A*68:01) in TILs from patients
with epithelial cancers [14,15]. Although HLA-A*02:01 is the most common HLA allele
in Caucasians, the total frequency of these three TP53 mutations is less than 5% in the
pan-cancer population. Thus, more extensive screenings and identification of targetable
shared neoantigens are required to apply this concept to a clinical setting.
In the present study, we attempted to comprehensively screen shared neoantigens
derived from recurrent somatic mutations observed in 10,182 exome sequencing data in
the Cancer Genome Atlas (TCGA) and identified a peptide derived from FGFR3 Y373C,
which is frequent in bladder cancer, as a candidate of shared neoantigens. Here, we report
the establishment of genetically engineered FGFR3Y373C -specific TCR-T cells and their
cytotoxic functions.
2. Materials and Methods
2.1. Cell Lines and Antibodies
We purchased C1R (B lymphoblasts lacking endogenous human leukocyte antigen
(HLA)-A and HLA-B expression), Jiyoye, and EB-3 cells from the American Type Culture
Collection (Rockville, MD, USA) and cultured them in RPMI1640 supplemented with
10% FBS. We developed C1R cells stably expressing HLA-A*02:01 or HLA-A*24:02 (C1RA0201 or C1R-A2402, respectively) in our previous study [4]. We generated C1R-A0206,
C1R-A1101, C1R-A3101, and C1R-A3303 by the nucleofection of pCAGGS vectors encoding
HLA-A*02:06, HLA-A*11:01, HLA-A*31:01, and HLA-A*33:03 cDNAs, respectively. ...

参考文献

1.

2.

3.

4.

5.

6.

7.

Yarchoan, M.; Hopkins, A.; Jaffee, E.M. Tumor Mutational Burden and Response Rate to PD-1 Inhibition. N. Engl. J. Med. 2017,

377, 2500–2501. [CrossRef] [PubMed]

Postow, M.A.; Callahan, M.K.; Wolchok, J.D. Immune checkpoint blockade in cancer therapy. J. Clin. Oncol. 2015, 33, 1974–1982.

[CrossRef] [PubMed]

Tang, J.; Shalabi, A.; Hubbard-Lucey, V.M. Comprehensive analysis of the clinical immuno-oncology landscape. Ann. Oncol. 2018,

29, 84–91. [CrossRef] [PubMed]

Kato, T.; Matsuda, T.; Ikeda, Y.; Park, J.H.; Leisegang, M.; Yoshimura, S.; Hikichi, T.; Harada, M.; Zewde, M.; Sato, S.; et al.

Effective screening of T cells recognizing neoantigens and construction of T-cell receptor-engineered T cells. Oncotarget 2018, 9,

11009–11019. [CrossRef]

Matsuda, T.; Leisegang, M.; Park, J.H.; Ren, L.; Kato, T.; Ikeda, Y.; Harada, M.; Kiyotani, K.; Lengyel, E.; Fleming, G.F.; et al.

Induction of Neoantigen-Specific Cytotoxic T Cells and Construction of T-cell Receptor-Engineered T Cells for Ovarian Cancer.

Clin. Cancer Res. 2018, 24, 5357–5367. [CrossRef]

Ren, L.; Leisegang, M.; Deng, B.; Matsuda, T.; Kiyotani, K.; Kato, T.; Harada, M.; Park, J.H.; Saloura, V.; Seiwert, T.; et al.

Identification of neoantigen-specific T cells and their targets: Implications for immunotherapy of head and neck squamous cell

carcinoma. Oncoimmunology 2019, 8, e1568813. [CrossRef]

Kiyotani, K.; Chan, H.T.; Nakamura, Y. Immunopharmacogenomics towards personalized cancer immunotherapy targeting

neoantigens. Cancer Sci. 2018, 109, 542–549. [CrossRef]

Cancers 2023, 15, 1031

8.

9.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

13 of 14

Kiyotani, K.; Toyoshima, Y.; Nakamura, Y. Immunogenomics in personalized cancer treatments. J. Hum. Genet. 2021, 66, 901–907.

[CrossRef]

Schumacher, T.; Bunse, L.; Pusch, S.; Sahm, F.; Wiestler, B.; Quandt, J.; Menn, O.; Osswald, M.; Oezen, I.; Ott, M.; et al. A vaccine

targeting mutant IDH1 induces antitumour immunity. Nature 2014, 512, 324–327. [CrossRef]

Tran, E.; Ahmadzadeh, M.; Lu, Y.C.; Gros, A.; Turcotte, S.; Robbins, P.F.; Gartner, J.J.; Zheng, Z.; Li, Y.F.; Ray, S.; et al. Immunogenicity of somatic mutations in human gastrointestinal cancers. Science 2015, 350, 1387–1390. [CrossRef]

Deniger, D.C.; Pasetto, A.; Robbins, P.F.; Gartner, J.J.; Prickett, T.D.; Paria, B.C.; Malekzadeh, P.; Jia, L.; Yossef, R.; Langhan, M.M.;

et al. T-cell responses to TP53 “hotspot” mutations and unique neoantigens expressed by human ovarian cancers. Clin Cancer Res.

2018, 24, 5562–5573. [CrossRef]

Tran, E.; Robbins, P.F.; Lu, Y.C.; Prickett, T.D.; Gartner, J.J.; Jia, L.; Pasetto, A.; Zheng, Z.; Ray, S.; Groh, E.M.; et al. T-cell transfer

therapy targeting mutant KRAS in cancer. N. Engl. J. Med. 2016, 375, 2255–2262. [CrossRef]

Leidner, R.; Sanjuan Silva, N.; Huang, H.; Sprott, D.; Zheng, C.; Shih, Y.P.; Leung, A.; Payne, R.; Sutcliffe, K.; Cramer, J.; et al.

Neoantigen T-cell receptor gene therapy in pancreatic cancer. N. Engl. J. Med. 2022, 386, 2112–2119. [CrossRef]

Lo, W.; Parkhurst, M.; Robbins, P.F.; Tran, E.; Lu, Y.C.; Jia, L.; Gartner, J.J.; Pasetto, A.; Deniger, D.; Malekzadeh, P.; et al.

Immunologic recognition of a shared p53 mutated neoantigen in a patient with metastatic colorectal cancer. Cancer Immunol. Res.

2019, 7, 534–543. [CrossRef]

Malekzadeh, P.; Pasetto, A.; Robbins, P.F.; Parkhurst, M.R.; Paria, B.C.; Jia, L.; Gartner, J.J.; Hill, V.; Yu, Z.; Restifo, N.P.; et al.

Neoantigen screening identifies broad TP53 mutant immunogenicity in patients with epithelial cancers. J. Clin. Investig. 2019, 129,

1109–1114. [CrossRef]

Zhang, Z.; Hernandez, K.; Savage, J.; Li, S.; Miller, D.; Agrawal, S.; Ortuno, F.; Staudt, L.M.; Heath, A.; Grossman, R.L. Uniform

genomic data analysis in the NCI Genomic Data Commons. Nat. Commun. 2021, 12, 1226. [CrossRef]

Lundegaard, C.; Lamberth, K.; Harndahl, M.; Buus, S.; Lund, O.; Nielsen, M. NetMHC-3.0: Accurate web accessible predictions of

human, mouse and monkey MHC class I affinities for peptides of length 8-11. Nucleic Acids Res. 2008, 36, W509–W512. [CrossRef]

Nielsen, M.; Lundegaard, C.; Blicher, T.; Lamberth, K.; Harndahl, M.; Justesen, S.; Roder, G.; Peters, B.; Sette, A.; Lund, O.; et al.

NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence.

PLoS ONE 2007, 2, e796. [CrossRef]

Choudhury, N.J.; Kiyotani, K.; Yap, K.L.; Campanile, A.; Antic, T.; Yew, P.Y.; Steinberg, G.; Park, J.H.; Nakamura, Y.; O’Donnell,

P.H. Low T-cell Receptor Diversity, High Somatic Mutation Burden, and High Neoantigen Load as Predictors of Clinical Outcome

in Muscle-invasive Bladder Cancer. Eur. Urol. Focus 2016, 2, 445–452. [CrossRef]

Hirata, J.; Hosomichi, K.; Sakaue, S.; Kanai, M.; Nakaoka, H.; Ishigaki, K.; Suzuki, K.; Akiyama, M.; Kishikawa, T.;

Ogawa, K.; et al. Genetic and phenotypic landscape of the major histocompatibilty complex region in the Japanese population.

Nat. Genet. 2019, 51, 470–480. [CrossRef]

Kiyotani, K.; Toyoshima, Y.; Nemoto, K.; Nakamura, Y. Bioinformatic prediction of potential T cell epitopes for SARS-Cov-2.

J. Hum. Genet. 2020, 65, 569–575. [CrossRef] [PubMed]

Yoshimura, S.; Tsunoda, T.; Osawa, R.; Harada, M.; Watanabe, T.; Hikichi, T.; Katsuda, M.; Miyazawa, M.; Tani, M.;

Iwahashi, M.; et al. Identification of an HLA-A2-restricted epitope peptide derived from hypoxia-inducible protein 2 (HIG2). PLoS

ONE

2014,

9, e85267. [CrossRef] [PubMed]

Fang, H.; Yamaguchi, R.; Liu, X.; Daigo, Y.; Yew, P.Y.; Tanikawa, C.; Matsuda, K.; Imoto, S.; Miyano, S.; Nakamura, Y. Quantitative

T cell repertoire analysis by deep cDNA sequencing of T cell receptor alpha and beta chains using next-generation sequencing

(NGS). Oncoimmunology 2014, 3, e968467. [CrossRef] [PubMed]

Cohen, C.J.; Zhao, Y.; Zheng, Z.; Rosenberg, S.A.; Morgan, R.A. Enhanced antitumor activity of murine-human hybrid T-cell

receptor (TCR) in human lymphocytes is associated with improved pairing and TCR/CD3 stability. Cancer Res. 2006, 66,

8878–8886. [CrossRef]

Leisegang, M.; Engels, B.; Meyerhuber, P.; Kieback, E.; Sommermeyer, D.; Xue, S.A.; Reuss, S.; Stauss, H.; Uckert, W. Enhanced

functionality of T cell receptor-redirected T cells is defined by the transgene cassette. J. Mol. Med. 2008, 86, 573–583. [CrossRef]

Padovan, E.; Casorati, G.; Dellabona, P.; Meyer, S.; Brockhaus, M.; Lanzavecchia, A. Expression of two T cell receptor alpha chains:

Dual receptor T cells. Science 1993, 262, 422–424. [CrossRef]

Coulie, P.G.; Van den Eynde, B.J.; van der Bruggen, P.; Boon, T. Tumour antigens recognized by T lymphocytes: At the core of

cancer immunotherapy. Nat. Rev. Cancer 2014, 14, 135–146. [CrossRef]

Rosenberg, S.A.; Restifo, N.P. Adoptive cell transfer as personalized immunotherapy for human cancer. Science 2015, 348, 62–68.

[CrossRef]

Ott, P.A.; Hu, Z.; Keskin, D.B.; Shukla, S.A.; Sun, J.; Bozym, D.J.; Zhang, W.; Luoma, A.; Giobbie-Hurder, A.; Peter, L.; et al. An

immunogenic personal neoantigen vaccine for patients with melanoma. Nature 2017, 547, 217–221. [CrossRef]

Keskin, D.B.; Anandappa, A.J.; Sun, J.; Tirosh, I.; Mathewson, N.D.; Li, S.; Oliveira, G.; Giobbie-Hurder, A.; Felt, K.; Gjini, E.; et al.

Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature 2019, 565, 234–239. [CrossRef]

Sahin, U.; Derhovanessian, E.; Miller, M.; Kloke, B.P.; Simon, P.; Lower, M.; Bukur, V.; Tadmor, A.D.; Luxemburger, U.; Schrors,

B.; et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature 2017, 547,

222–226. [CrossRef]

Cancers 2023, 15, 1031

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

14 of 14

Hilf, N.; Kuttruff-Coqui, S.; Frenzel, K.; Bukur, V.; Stevanovic, S.; Gouttefangeas, C.; Platten, M.; Tabatabai, G.; Dutoit, V.; van der

Burg, S.H.; et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature 2019, 565, 240–245. [CrossRef]

Ott, P.A.; Hu-Lieskovan, S.; Chmielowski, B.; Govindan, R.; Naing, A.; Bhardwaj, N.; Margolin, K.; Awad, M.M.; Hellmann, M.D.;

Lin, J.J.; et al. A phase Ib trial of personalized neoantigen therapy plus anti-PD-1 in patients with advanced melanoma, non-small

cell lung cancer, or bladder cancer. Cell 2020, 183, 347–362.e324. [CrossRef]

Greulich, H.; Pollock, P.M. Targeting mutant fibroblast growth factor receptors in cancer. Trends Mol. Med. 2011, 17, 283–292.

[CrossRef]

Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of

incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [CrossRef]

Sidney, J.; Peters, B.; Frahm, N.; Brander, C.; Sette, A. HLA class I supertypes: A revised and updated classification. BMC Immunol.

2008, 9, 1. [CrossRef]

Hikichi, T.; Sakamoto, M.; Harada, M.; Saito, M.; Yamane, Y.; Tokumura, K.; Nakamura, Y. Identification of cytotoxic T cells

and their T cell receptor sequences targeting COVID-19 using MHC class I-binding peptides. J. Hum. Genet. 2022, 67, 411–419.

[CrossRef]

Fleischhauer, K.; Tanzarella, S.; Russo, V.; Sensi, M.L.; van der Bruggen, P.; Bordignon, C.; Traversari, C. Functional heterogeneity

of HLA-A*02 subtypes revealed by presentation of a MAGE-3-encoded peptide to cytotoxic T cell clones. J. Immunol. 1997, 159,

2513–2521. [CrossRef]

Tan, A.T.; Loggi, E.; Boni, C.; Chia, A.; Gehring, A.J.; Sastry, K.S.; Goh, V.; Fisicaro, P.; Andreone, P.; Brander, C.; et al. Host

ethnicity and virus genotype shape the hepatitis B virus-specific T-cell repertoire. J. Virol. 2008, 82, 10986–10997. [CrossRef]

van Buuren, M.M.; Dijkgraaf, F.E.; Linnemann, C.; Toebes, M.; Chang, C.X.; Mok, J.Y.; Nguyen, M.; van Esch, W.J.; Kvistborg, P.;

Grotenbreg, G.M.; et al. HLA micropolymorphisms strongly affect peptide-MHC multimer-based monitoring of antigen-specific

CD8+ T cell responses. J. Immunol. 2014, 192, 641–648. [CrossRef]

Leisegang, M.; Engels, B.; Schreiber, K.; Yew, P.Y.; Kiyotani, K.; Idel, C.; Arina, A.; Duraiswamy, J.; Weichselbaum, R.R.;

Uckert, W.; et al. Eradication of large solid tumors by gene therapy with a T-cell receptor targeting a single cancer-specific point

mutation. Clin. Cancer Res. 2016, 22, 2734–2743. [CrossRef] [PubMed]

Wei, T.; Leisegang, M.; Xia, M.; Kiyotani, K.; Li, N.; Zeng, C.; Deng, C.; Jiang, J.; Harada, M.; Agrawal, N.; et al. Generation of

neoantigen-specific T cells for adoptive cell transfer for treating head and neck squamous cell carcinoma. Oncoimmunology 2021,

10, 1929726. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual

author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to

people or property resulting from any ideas, methods, instructions or products referred to in the content.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る