リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Endosomal dysfunction in iPSC-derived neural cells from Parkinson’s disease patients with VPS35 D620N」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Endosomal dysfunction in iPSC-derived neural cells from Parkinson’s disease patients with VPS35 D620N

坊野, 恵子 東京慈恵会医科大学 DOI:info:doi/10.1186/s13041-020-00675-5

2021.09.08

概要

Mutations in the Vacuolar protein sorting 35 (VPS35) gene have been linked to familial Parkinson’s disease (PD), PARK17. VPS35 is a key component of the retromer complex, which plays a central role in endosomal trafficking. How‑ ever, whether and how VPS35 deficiency or mutation contributes to PD pathogenesis remain unclear. Here, we ana‑ lyzed human induced pluripotent stem cell (iPSC)‑derived neurons from PD patients with the VPS35 D620N mutation and addressed relevant disease mechanisms. In the disease group, dopaminergic (DA) neurons underwent extensive apoptotic cell death. The movement of Rab5a‑ or Rab7a‑positive endosomes was slower, and the endosome fission and fusion frequencies were lower in the PD group than in the healthy control group. Interestingly, vesicles positive for cation‑independent mannose 6‑phosphate receptor transported by retromers were abnormally localized in glial cells derived from patient iPSCs. Furthermore, we found α‑synuclein accumulation in TH positive DA neurons. Our results demonstrate the induction of cell death, endosomal dysfunction and α ‑synuclein accumulation in neural cells of the PD group. PARK17 patient‑derived iPSCs provide an excellent experimental tool for understanding the patho‑ physiology underlying PD.

参考文献

1. Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry. 2008;79:368–76.

2. Massano J, Bhatia KP. Clinical approach to Parkinson’s disease: features, diagnosis, and principles of management. Cold Spring Harb Perspect Med. 2012;2:a008870.

3. Poewe W. Clinical measures of progression in Parkinson’s disease. Mov Disord. 2009;24(Suppl 2):S671–6.

4. Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. Alpha‑synuclein in Lewy bodies. Nature. 1997;388:839–40.

5. Braak H, Braak E. Pathoanatomy of Parkinson’s disease. J Neurol. 2000;247(Suppl 2):3–10.

6. Gasser T. Update on the genetics of Parkinson’s disease. Mov Disord. 2007;22(Suppl 17):S343–50.

7. Savitt JM, Dawson VL, Dawson TM. Diagnosis and treatment of Parkinson disease: molecules to medicine. J Clin Invest. 2006;116:1744–54.

8. von Coelln R, Thomas B, Andrabi SA, Lim KL, Savitt JM, Saffary R, et al. Inclusion body formation and neurodegeneration are parkin inde‑ pendent in a mouse model of alpha‑synucleinopathy. J Neurosci. 2006;26:3685–96.

9. Lee Y, Dawson VL, Dawson TM. Animal models of Parkinson’s disease: vertebrate genetics. Cold Spring Harb Perspect Med. 2012;2:a009324.

10. Vilarino‑Guell C, Wider C, Ross OA, Dachsel JC, Kachergus JM, Lincoln SJ, et al. VPS35 mutations in Parkinson disease. Am J Hum Genet. 2011;89:162–7.

11. Zimprich A, Benet‑Pages A, Struhal W, Graf E, Eck SH, Offman MN, et al. A mutation in VPS35, encoding a subunit of the retromer complex, causes late‑onset Parkinson disease. Am J Hum Genet. 2011;89:168–75.

12. Ando M, Funayama M, Li Y, Kashihara K, Murakami Y, Ishizu N, et al. VPS35 mutation in Japanese patients with typical Parkinson’s disease. Mov Disord. 2012;27:1413–7.

13. Kurisaki H, Yomono H, Murayama S, Hebisawa A. Clinical Neuroscience. Tokyo: Chugai‑Igakusha; 2014, p. 850–1.

14. Burd C, Cullen PJ. Retromer: a master conductor of endosome sorting. Cold Spring Harb Perspect Biol. 2014;6:a016774.

15. Hierro A, Rojas AL, Rojas R, Murthy N, Effantin G, Kajava AV, et al. Func‑ tional architecture of the retromer cargo‑recognition complex. Nature. 2007;449:1063–7.

16. Seaman MN, McCaffery JM, Emr SD. A membrane coat complex essential for endosome‑to‑Golgi retrograde transport in yeast. J Cell Biol. 1998;142(3):665–81.

17. Seaman MN. The retromer complex—endosomal protein recycling and beyond. J Cell Sci. 2012;125:4693–702.

18. Wang J, Fedoseienko A, Chen B, Burstein E, Jia D, Billadeau DD. Endoso‑ mal receptor trafficking: Retromer and beyond. Traffic. 2018;19:578–90.

19. Arighi CN, Hartnell LM, Aguilar RC, Haft CR, Bonifacino JS. Role of the mammalian retromer in sorting of the cation‑independent mannose 6‑phosphate receptor. J Cell Biol. 2004;165:123–33.

20. Bonifacino JS, Rojas R. Retrograde transport from endosomes to the trans‑Golgi network. Nat Rev Mol Cell Biol. 2006;7:568–79.

21. Seaman MN. Cargo‑selective endosomal sorting for retrieval to the Golgi requires retromer. J Cell Biol. 2004;165:111–22.

22. Vieira SI, Rebelo S, Esselmann H, Wiltfang J, Lah J, Lane R, et al. Retrieval of the Alzheimer’s amyloid precursor protein from the endosome to the TGN is S655 phosphorylation state‑dependent and retromer‑mediated. Mol Neurodegener. 2010;5:40.

23. Wen L, Tang FL, Hong Y, Luo SW, Wang CL, He W, et al. VPS35 haploin‑ sufficiency increases Alzheimer’s disease neuropathology. J Cell Biol. 2011;195:765–79.

24. Belenkaya TY, Wu Y, Tang X, Zhou B, Cheng L, Sharma YV, et al. The retromer complex influences Wnt secretion by recycling wntless from endosomes to the trans‑Golgi network. Dev Cell. 2008;14:120–31.

25. Pan CL, Baum PD, Gu M, Jorgensen EM, Clark SG, Garriga GC. elegans AP‑2 and retromer control Wnt signaling by regulating mig‑14/Wnt‑ less. Dev Cell. 2008;14:132–9.

26. Yang PT, Lorenowicz MJ, Silhankova M, Coudreuse DY, Betist MC, Korswagen HC. Wnt signaling requires retromer‑dependent recycling of MIG‑14/Wntless in Wnt‑producing cells. Dev Cell. 2008;14:140–7.

27. Temkin P, Lauffer B, Jager S, Cimermancic P, Krogan NJ, von Zastrow M. SNX27 mediates retromer tubule entry and endosome‑to‑ plasma membrane trafficking of signalling receptors. Nat Cell Biol. 2011;13:715–21.

28. Munsie LN, Milnerwood AJ, Seibler P, Beccano‑Kelly DA, Tatarnikov I, Khinda J, et al. Retromer‑dependent neurotransmitter receptor traffick‑ ing to synapses is altered by the Parkinson’s disease VPS35 mutation p.D620N. Hum Mol Genet. 2015;24:1691–703.

29. Small SA, Petsko GA. Retromer in Alzheimer disease, Parkinson disease and other neurological disorders. Nat Rev Neurosci. 2015;16:126–32.

30. Galvez T, Gilleron J, Zerial M, O’Sullivan GA. SnapShot: Mammalian Rab proteins in endocytic trafficking. Cell. 2012;151(234–234):e2.

31. Pfeffer S. Membrane domains in the secretory and endocytic pathways. Cell. 2003;112(4):507–17.

32. Wandinger‑Ness A, Zerial M. Rab proteins and the compartmentali‑ zation of the endosomal system. Cold Spring Harb Perspect Biol. 2014;6:a022616.

33. Rink J, Ghigo E, Kalaidzidis Y, Zerial M. Rab conversion as a mechanism of progression from early to late endosomes. Cell. 2005;122:735–49.

34. Rojas R, van Vlijmen T, Mardones GA, Prabhu Y, Rojas AL, et al. Regula‑ tion of retromer recruitment to endosomes by sequential action of Rab5 and Rab7. J Cell Biol. 2008;183:513–26.

35. Seaman MN, Harbour ME, Tattersall D, Read E, Bright N. Membrane recruitment of the cargo‑selective retromer subcomplex is catalysed by the small GTPase Rab7 and inhibited by the Rab‑GAP TBC1D5. J Cell Sci. 2007;122:2371–82.

36. Abeliovich A, Gitler AD. Defects in trafficking bridge Parkinson’s disease pathology and genetics. Nature. 2016;539:207–16.

37. Perrett RM, Alexopoulou Z, Tofaris GK. The endosomal pathway in Parkinson’s disease. Mol Cell Neurosci. 2015;66:21–8.

38. Tajiri S, Yamanaka S, Fujimoto T, Matsumoto K, Taguchi A, Nishinaka‑ mura R, et al. Regenerative potential of induced pluripotent stem cells derived from patients undergoing haemodialysis in kidney regenera‑ tion. Sci Rep. 2018;8:14919.

39. Doi D, Samata B, Katsukawa M, Kikuchi T, Morizane A, Ono Y, et al. Isola‑ tion of human induced pluripotent stem cell‑derived dopaminergic progenitors by cell sorting for successful transplantation. Stem Cell Reports. 2014;2:337–50.

40. Lasiecka ZM, Winckler B. Mechanisms of polarized membrane traf‑ ficking in neurons—focusing in on endosomes. Mol Cell Neurosci. 2011;48:278–87.

41. Huotari J, Helenius A. Endosome maturation. EMBO J. 2011;30:3481–500.

42. Stenmark H. Rab GTPases as coordinators of vesicle traffic. Nat Rev Mol Cell Biol. 2009;10:513–25.

43. McNally KE, Faulkner R, Steinberg F, Gallon M, Ghai R, Pim D, et al. Retriever is a multiprotein complex for retromer‑independent endoso‑ mal cargo recycling. Nat Cell Biol. 2017;19(10):1214–25.

44. Derivery E, Sousa C, Gautier JJ, Lombard B, Loew D, Gautreau A. The Arp2/3 activator WASH controls the fission of endosomes through a large multiprotein complex. Dev Cell. 2009;17:712–23.

45. Gomez TS, Billadeau DD. A FAM21‑containing WASH complex regulates retromer‑dependent sorting. Dev Cell. 2009;17:699–711.

46. Zavodszky E, Seaman MN, Moreau K, Jimenez‑Sanchez M, Breusegem SY, Harbour ME, et al. Mutation in VPS35 associated with Parkinson’s disease impairs WASH complex association and inhibits autophagy. Nat Commun. 2014;5:3828.

47. Qiao L, Hamamichi S, Caldwell KA, Caldwell GA, Yacoubian TA, Wilson S, et al. Lysosomal enzyme cathepsin D protects against alpha‑synuclein aggregation and toxicity. Mol Brain. 2008;1:17.

48. Sevlever D, Jiang P, Yen SHC. Cathepsin D Is the Main Lysosomal Enzyme Involved in the Degradation of α‑Synuclein and Genera‑ tion of Its Carboxy‑Terminally Truncated Species†. Biochemistry. 2008;47:9678–87.

49. Harbour Michael E, Breusegem Sophia Y, Seaman Matthew NJ. Recruit‑ ment of the endosomal WASH complex is mediated by the extended ‘tail’ of Fam21 binding to the retromer protein Vps35. Biochem J. 2012;442(1):209–20.

50. Jia D, Gomez TS, Billadeau DD, Rosen MK. Multiple repeat elements within the FAM21 tail link the WASH actin regulatory complex to the retromer. Mol Biol Cell. 2012;23(12):2352–61.

51. Helfer E, Harbour ME, Henriot V, Lakisic G, Sousa‑Blin C, Volceanov L, et al. Endosomal recruitment of the WASH complex: active sequences and mutations impairing interaction with the retromer. Biol Cell. 2013;105(5):191–207.

52. Gautreau A, Oguievetskaia K, Ungermann C. Function and regulation of the endosomal fusion and fission machineries. Cold Spring Harb Perspect Biol. 2014;6:a016832.

53. Balderhaar HJ, Ungermann C. CORVET and HOPS tethering com‑ plexes—coordinators of endosome and lysosome fusion. J Cell Sci. 2013;126:1307–16.

54. Ghosh P, Dahms NM, Kornfeld S. Mannose 6‑phosphate receptors: new twists in the tale. Nat Rev Mol Cell Biol. 2003;4:202–12.

55. Seaman MNJ. Retromer and the cation‑independent mannose 6‑phos‑ phate receptor‑Time for a trial separation? Traffic. 2018;19:150–2.

56. Kvainickas A, Jimenez‑Orgaz A, Nagele H, Hu Z, Dengjel J, Steinberg F. Cargo‑selective SNX‑BAR proteins mediate retromer trimer independ‑ ent retrograde transport. J Cell Biol. 2017;216:3677–93.

57. Simonetti B, Danson CM, Heesom KJ. Cullen PJ Sequence‑dependent cargo recognition by SNX‑BARs mediates retromer‑independent trans‑ port of CI‑MPR. J Cell Biol. 2017;216:3695–712.

58. MacLeod DA, Rhinn H, Kuwahara T, Zolin A, Di Paolo G, McCabe BD, et al. RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson’s disease risk. Neuron. 2013;77(3):425–39.

59. McGough IJ, Steinberg F, Jia D, Barbuti PA, McMillan KJ, Heesom KJ, et al. Retromer binding to FAM21 and the WASH complex is perturbed by the Parkinson disease‑linked VPS35(D620N) mutation. Curr Biol. 2014;24(14):1670–6.

60. Follett J, Norwood SJ, Hamilton NA, Mohan M, Kovtun O, Tay S, et al. The Vps35 D620N mutation linked to Parkinson’s disease disrupts the cargo sorting function of retromer. Traffic. 2014;15:230–44.

61. Fuse A, Furuya N, Kakuta S, Inose A, Sato M, Koike M, et al. VPS29‑VPS35 intermediate of retromer is stable and may be involved in the retromer complex assembly process. FEBS Lett. 2015;589:1430–6.

62. Waguri S, Dewitte F, Le Borgne R, Rouillé Y, Uchiyama Y, Dubrem‑ etz J‑F, et al. Visualization of TGN to Endosome Trafficking through Fluorescently Labeled MPR and AP‑1 in Living Cells. Mol Biol Cell. 2003;14:142–55.

63. Dhungel N, Eleuteri S, Li LB, Kramer NJ, Chartron JW, Spencer B, et al. Parkinson’s disease genes VPS35 and EIF4G1 interact genetically and converge on alpha‑synuclein. Neuron. 2015;85:76–87.

64. Miura E, Hasegawa T, Konno M, Suzuki M, Sugeno N, Fujikake N, et al. VPS35 dysfunction impairs lysosomal degradation of alpha‑synuclein and exacerbates neurotoxicity in a Drosophila model of Parkinson’s disease. Neurobiol Dis. 2014;71:1–13.

65. Tang FL, Erion JR, Tian Y, Liu W, Yin DM, Ye J, et al. VPS35 in dopamine neurons is required for endosome‑to‑Golgi retrieval of Lamp2a, a receptor of chaperone‑mediated autophagy that is critical for alpha‑ synuclein degradation and prevention of pathogenesis of Parkinson’s disease. J Neurosci. 2015;35:10613–28.

66. Tang FL, Liu W, Hu JX, Erion JR, Ye J, Mei L, et al. VPS35 deficiency or mutation causes dopaminergic neuronal loss by impairing mitochon‑ drial fusion and function. Cell Rep. 2015;12(10):1631–43.

67. Chen X, Kordich JK, Williams ET, Levine N, Cole‑Strauss A, Marshall L, et al. Parkinson’s disease‑linked D620N VPS35 knockin mice manifest tau neuropathology and dopaminergic neurodegeneration. Proc Natl Acad Sci USA. 2019;116(12):5765–74.

68. Small SA, Kent K, Pierce A, Leung C, Kang MS, Okada H, Honig L, Vonsattel JP, Kim TW. Model‑guided microarray implicates the retromer complex in Alzheimer’s disease. Ann Neurol. 2005;58:909–19.

69. Mecozzi VJ, Berman DE, Simoes S, Vetanovetz C, Awal MR, Patel VM, et al. Pharmacological chaperones stabilize retromer to limit APP processing. Nat Chem Biol. 2014;10:443–9.

70. Vagnozzi AN, Li JG, Chiu J, Razmpour R, Warfield R, Ramirez SH, Pratico D. VPS35 regulates tau phosphorylation and neuropathology in tauopathy. Mol Psychiatry. 2019. https://doi.org/10.1038/s41380‑019‑0453‑x.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る