リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Analysis of microRNA expression in liquid-based cytological samples may be useful for primary lung cancer diagnosis」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Analysis of microRNA expression in liquid-based cytological samples may be useful for primary lung cancer diagnosis

荒木 佑亮 広島大学

2021.03.23

概要

Lung cancer is the leading cause of cancer deaths in the world. Bronchoscopy is useful
for the diagnosis of lung cancer, so we perform bronchoscopy when we detect nodules, which are
suspected as lung cancer by chest imaging. However, we sometimes fail to collect adequate cytological
and/or biopsy samples because of tumor location or size. Therefore, it is hard for us to diagnose certain
patients as having lung cancer despite the presence of a lung tumor identified by radiological
examination. On the other hand, we usually use classification schemes in evaluating cytological
specimens. When it is difficult to differentiate atypical cells from carcinoma cells, we judge the
cytological specimen to be indeterminate. Therefore, there are some cases that undergo surgical
excision for histological diagnosis or additional invasive examinations, and which can result in the
diagnosis of benign lesions.
MicroRNAs (miRs) are small noncoding RNAs consisting of approximately 22
nucleotides that play important roles in the regulation of gene expression 1. ...

この論文で使われている画像

参考文献

1. Bartel DP. MicroRNAs: Genomics, Biogenesis, Mechanism, and Function. Cell 2004;116:281297.

2. Võsa U, Vooder T, Kolde R, et al. Meta-analysis of microRNA expression in lung cancer. Int J

Cancer 2013;132:2884-2893.

3. Markou A, Sourvinou I, Vorkas PA, et al. Clinical evaluation of microRNA expression profiling

in non small cell lung cancer. Lung Cancer 2013;81:388-396. Available at:

http://dx.doi.org/10.1016/j.lungcan.2013.05.007.

4. Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: a novel class of biomarkers

for diagnosis of cancer and other diseases. Cell Res 2008;18:997-1006. Available at:

http://www.nature.com/articles/cr2008282.

5. Jin X, Chen Y, Chen H, et al. Evaluation of Tumor-Derived Exosomal miRNA as Potential

Diagnostic Biomarkers for Early-Stage Non-Small Cell Lung Cancer Using Next-Generation

Sequencing. Clin Cancer Res 2017;23:5311-5319. Available at:

http://clincancerres.aacrjournals.org/lookup/doi/10.1158/1078-0432.CCR-17-0577.

6. Xie Y, Todd NW, Liu Z, et al. Altered miRNA expression in sputum for diagnosis of non-small

cell lung cancer. Lung Cancer 2010;67:170-176. Available at:

http://linkinghub.elsevier.com/retrieve/pii/S0169500209002153.

 

7. Huang W, Hu J, Yang DW, et al. Two microRNA panels to discriminate three subtypes of lung

carcinoma in bronchial brushing specimens. Am J Respir Crit Care Med 2012;186:1160-1167.

8. Si ML, Zhu S, Wu H, et al. miR-21-mediated tumor growth. Oncogene 2007;26:2799-2803.

9. Chan S-H, Wu C-W, Li AFY, et al. miR-21 microRNA expression in human gastric carcinomas

and its clinical association. Anticancer Res 2008;28:907-11. Available at:

http://www.ncbi.nlm.nih.gov/pubmed/18507035.

10. Wang LJ, He CC, Sui X, et al. MiR-21 promotes intrahepatic cholangiocarcinoma proliferation

and growth in vitro and in vivo by targeting PTPN14 and PTEN¥r. Oncotarget¥r 2015;6:546-5932.

11. Li L, Wang X, Li W, et al. miR-21 modulates prostaglandin signaling and promotes gastric

tumorigenesis by targeting 15-PGDH. Biochem Biophys Res Commun 2018;495:928-934. Available

at: https://doi.org/10.1016/j.bbrc.2017.09.137.

12. Jiang M, Li X, Quan X, et al. Clinically Correlated MicroRNAs in the Diagnosis of Non-Small

Cell Lung Cancer: A Systematic Review and Meta-Analysis. Biomed Res Int 2018;2018.

13. Hatley ME, Patrick DM, Garcia MR, et al. Modulation of K-Ras-dependent lung tumorigenesis

by MicroRNA-21. Cancer Cell 2010;18:282-293. Available at:

http://dx.doi.org/10.1016/j.ccr.2010.08.013.

 

14. Zhang J guang, Wang J jun, Zhao F, et al. MicroRNA-21 (miR-21) represses tumor suppressor

PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC). Clin Chim Acta

2010;411:846-852. Available at: http://dx.doi.org/10.1016/j.cca.2010.02.074.

15. Xia H, Zhang W, Zhang B, et al. miR-21 modulates the effect of EZH2 on the biological

behavior of human lung cancer stem cells in vitro. Oncotarget 2017;8:85442-85451.

16. Liu XG, Zhu WY, Huang YY, et al. High expression of serum miR-21 and tumor miR-200c

associated with poor prognosis in patients with lung cancer. Med Oncol 2012;29:618-626.

17. Wang ZX, Bian HB, Wang JR, et al. Prognostic significance of serum miRNA-21 expression in

human non-small cell lung cancer. J Surg Oncol 2011;104:847-851.

18. Xu RS, Wu XD, Zhang SQ, et al. The tumor suppressor gene RhoBTB1 is a novel target of miR31 in human colon cancer. Int J Oncol 2013;42:676-682.

19. Zheng W, Liu Z, Zhang W, et al. miR-31 functions as an oncogene in cervical cancer. Arch

Gynecol Obstet 2015;292:1083-1089. Available at: http://dx.doi.org/10.1007/s00404-015-3713-2.

20. Liu X, Sempere LF, Ouyang H, et al. MicroRNA-31 functions as an oncogenic microRNA in

mouse and human lung cancer cells by repressing specific tumor suppressors. J Clin Invest

2010;120:1298-1309.

21. Edmonds MD, Boyd KL, Moyo T, et al. MicroRNA-31 initiates lung tumorigenesis and

promotes mutant KRAS-driven lung cancer. J Clin Invest 2016;126:349-364.

  

22. Ichiyama K, Gonzalez-Martin A, Kim B-S, et al. The MicroRNA-183-96-182 Cluster Promotes

T Helper 17 Cell Pathogenicity by Negatively Regulating Transcription Factor Foxo1 Expression.

Immunity 2016;44:1284-1298. Available at:

https://linkinghub.elsevier.com/retrieve/pii/S1074761316302035.

23. Weeraratne SD, Amani V, Teider N, et al. Pleiotropic effects of miR-183̃96̃182 converge to

regulate cell survival, proliferation and migration in medulloblastoma. Acta Neuropathol

2012;123:539-552.

24. Li P, Sheng C, Huang L, et al. MiR-183/-96/-182 cluster is up-regulated in most breast cancers

and increases cell proliferation and migration. Breast Cancer Res 2014;16:1-17.

25. Zhu WY, Zhou KY, Zha Y, et al. Diagnostic Value of Serum miR-182, miR-183, miR-210, and

miR-126 levels in patients with early-stage non-small cell lung cancer. PLoS One 2016;11:1-16.

26. Zhu W, Liu X, He J, et al. Overexpression of members of the microRNA-183 family is a risk

factor for lung cancer: A case control study. BMC Cancer 2011;11:393. Available at:

http://bmccancer.biomedcentral.com/articles/10.1186/1471-2407-11-393.

27. Li G, Li M, Hu J, et al. The microRNA-182-PDK4 axis regulates lung tumorigenesis by

modulating pyruvate dehydrogenase and lipogenesis. Oncogene 2017;36:989-998.

28. Chang H, Liu YH, Wang LL, et al. Mir-182 promotes cell proliferation by suppressing fbxw7

and fbxw11 in non-small cell lung cancer. Am J Transl Res 2018;10:1131-1142.

 

29. Sarver AL, Li H, Subramanian S. MicroRNA miR-183 functions as an oncogene by targeting the

transcription factor EGR1 and promoting tumor cell migration. Cancer Res 2010;70:9570-9580.

30. Kirschner MB, Kao SC, Edelman JJ, et al. Haemolysis during Sample Preparation Alters

microRNA Content of Plasma. PLoS One 2011;6:e24145. Available at:

https://doi.org/10.1371/journal.pone.0024145.

31. Teruel-Montoya R, Kong X, Abraham S, et al. MicroRNA Expression Differences in Human

Hematopoietic Cell Lineages Enable Regulated Transgene Expression. PLoS One 2014;9:e102259.

Available at: https://doi.org/10.1371/journal.pone.0102259.

32. Pavel AB, Campbell JD, Liu G, et al. Alterations in Bronchial Airway miRNA Expression for

Lung Cancer Detection. Cancer Prev Res 2017;10:651-659. Available at:

http://cancerpreventionresearch.aacrjournals.org/lookup/doi/10.1158/1940-6207.CAPR-17-0098.

33. Sun Y, Fang R, Li C, et al. Hsa-mir-182 suppresses lung tumorigenesis through down regulation

of RGS17 expression in vitro. Biochem Biophys Res Commun 2010;396:501-507. Available at:

http://dx.doi.org/10.1016/j.bbrc.2010.04.127.

34. Wang G, Mao W, Zheng S. MicroRNA-183 regulates Ezrin expression in lung cancer cells.

FEBS Lett 2008;582:3663-3668. Available at: http://dx.doi.org/10.1016/j.febslet.2008.09.051.

 

35. Fujii T, Asano A, Shimada K, et al. Evaluation of RNA and DNA extraction from liquid-based

cytology specimens. Diagn Cytopathol 2016;44:833-840. Available at:

http://doi.wiley.com/10.1002/dc.23524.

36. Schwarzenbach H, Silva AM da, Calin G, et al. Which is the accurate data normalization strategy

for microRNA quantification? Clin Chem 2015;61:1333-1342.

 

Table 1. Clinical characteristics of 18 NSCLC patients

Table 2. Clinical characteristics of 125 patients

Table 3. Relationship of case numbers examined by RT-qPCR for 4 miRNAs between histological

diagnosis and cytologic classification

Figure 1. Selection protocol for liquid-based cytological specimens. (Number of cases histologically

diagnosed cancerous (T) or non-cancerous (N))

Figure 2. Relative expression of miR-21(A), miR-31(B), miR-182(C), and miR-183(D) in lung cancer

tissues and adjacent non-cancerous tissues. Four miRNAs were significantly up-regulated in cancer

tissues. T: lung cancer tissues, N: adjacent non-cancerous tissues. *Pʽ0.05 **Pʽ0.01

Figure 3. Relative expression of each miRNA in cytological samples. Four miRNAs were significantly

up-regulated in samples obtained from cases finally diagnosed as cancerous(A-D). T: Cases finally

diagnosed as cancer. N: Cases finally diagnosed as non-cancer. *Pʽ0.05 **Pʽ0.01

 

Figure 4. Relative expression of each miRNA in cytological samples judged as benign or indeterminate.

Four miRNAs were significantly up-regulated in samples obtained from cases histologically diagnosed

as cancerous in comparison with samples obtained from cases histologically diagnosed as noncancerous(A-D). T: Cases finally diagnosed as cancer. N: Cases finally diagnosed as non-cancer.  *p

ʽ0.05 **pʽ0.01

Figure 5. ROC curve analysis of diagnostic value in cytological samples diagnosed as benign.

ROC curve with corresponding the area under the ROC curve for each miRNA expression in LBC

from cancer cases vs. non-cancer cases (A-D). ROC curve with corresponding the area under the ROC

curve for 4 combined miRNA expression in LBC from cancer cases vs. non-cancer cases (E). The

diagnostic value of 4 combined miRNAs was better than each individual miRNA.

Supplemental figure 1. The difference of Ct value between Magcore® and manual isolation kit.

The detected expression levels of miRs extracted by Magcore® were lower than that detected by an

manual isolation kit

Supplemental figure 2. The correlation between each miR and clinical stage. There was no significant

correlation between each miR and clinical stage.

 

Supplemental figure 3.

The expression of each miR by tumor subtype. There was no significant difference between each tumor

subtype.

N: cases finally diagnosed as non-cancer. Ad: cases diagnosed as adenocarcinoma. Sq: cases diagnosed

squamous cell carcinoma. Small: cases diagnosed as small cell lung cancer. *pʽ0.05, **pʽ0.005.

 

Table 1. Clinical characteristics of 18 NSCLC patients

 

Table 2. Clinical characteristics of 125 patients

 

 

Table 3. Relationship of case numbers examined by RT-qPCR for 4 miRNAs between histological

diagnosis and cytologic classification

  

Figure 1. Selection protocol for liquid-based cytological specimens. (Number of cases histologically

diagnosed cancerous (T) or non-cancerous (N))

 

)LJXUH  5HODWLYH H[SUHVVLRQ RI PL5$ PL5% PL5& DQG PL5' LQ OXQJ FDQFHU

WLVVXHVDQGDGMDFHQWQRQFDQFHURXVWLVVXHV 

)RXUPL51$VZHUHVLJQLILFDQWO\XSUHJXODWHGLQFDQFHUWLVVXHV 

7 OXQJFDQFHUWLVVXHV1 DGMDFHQWQRQFDQFHURXVWLVVXHV 

Sʽ  Sʽ

 

)LJXUH5HODWLYHH[SUHVVLRQRIHDFKPL51$LQF\WRORJLFDOVDPSOHV 

)RXU PL51$V ZHUH VLJQLILFDQWO\ XSUHJXODWHG LQ VDPSOHV REWDLQHG IURP FDVHV ILQDOO\ GLDJQRVHG DV

FDQFHURXV$' 

7 &DVHVILQDOO\GLDJQRVHGDVFDQFHU1 &DVHVILQDOO\GLDJQRVHGDVQRQFDQFHU 

Sʽ  Sʽ

 

)LJXUH5HODWLYHH[SUHVVLRQRIHDFKPL51$LQF\WRORJLFDOVDPSOHVMXGJHGDVEHQLJQRULQGHWHUPLQDWH 

)RXUPL51$VZHUHVLJQLILFDQWO\XSUHJXODWHGLQVDPSOHVREWDLQHGIURPFDVHVKLVWRORJLFDOO\GLDJQRVHGDV

FDQFHURXVLQFRPSDULVRQZLWKVDPSOHVREWDLQHGIURPFDVHVKLVWRORJLFDOO\GLDJQRVHGDVQRQFDQFHURXV$

' 

7 &DVHVILQDOO\GLDJQRVHGDVFDQFHU1 &DVHVILQDOO\GLDJQRVHGDVQRQFDQFHU

Sʽ  Sʽ

 

 

)LJXUH52&FXUYHDQDO\VLVRIGLDJQRVWLFYDOXHLQF\WRORJLFDOVDPSOHVGLDJQRVHGDVEHQLJQ 

52&FXUYHZLWKFRUUHVSRQGLQJWKHDUHDXQGHUWKH52&FXUYHIRUHDFKPL51$H[SUHVVLRQLQ/%&IURP

FDQFHUFDVHVYVQRQFDQFHUFDVHV$'52&FXUYHZLWKFRUUHVSRQGLQJWKHDUHDXQGHUWKH52&FXUYHIRU

FRPELQHGPL51$H[SUHVVLRQLQ/%&IURPFDQFHUFDVHVYVQRQFDQFHUFDVHV(7KHGLDJQRVWLFYDOXHRI

FRPELQHGPL51$VZDVEHWWHUWKDQHDFKLQGLYLGXDOPL51$

 

6XSSOHPHQWDOILJXUH7KHGLIIHUHQFHRI&WYDOXHEHWZHHQ0DJFRUHœDQGPDQXDOLVRODWLRQNLW 

7KHGHWHFWHGH[SUHVVLRQOHYHOVRIPL5VH[WUDFWHGE\0DJFRUHœZHUHORZHUWKDQWKDWGHWHFWHGE\DPDQXDO

LVRODWLRQNLW

 

6XSSOHPHQWDOILJXUH7KHFRUUHODWLRQEHWZHHQHDFKPL5DQGFOLQLFDOVWDJH 

7KHUHZDVQRVLJQLILFDQWFRUUHODWLRQEHWZHHQHDFKPL5DQGFOLQLFDOVWDJH

 

6XSSOHPHQWDOILJXUH7KHH[SUHVVLRQRIHDFKPL5E\WXPRUVXEW\SH 

7KHUHZDVQRVLJQLILFDQWGLIIHUHQFHEHWZHHQHDFKWXPRUVXEW\SH

1  FDVHV ILQDOO\ GLDJQRVHG DV QRQFDQFHU $G  FDVHV GLDJQRVHG DV DGHQRFDUFLQRPD 6T  FDVHV GLDJQRVHG

VTXDPRXVFHOOFDUFLQRPD6PDOO FDVHVGLDJQRVHGDVVPDOOFHOOOXQJFDQFHU 

Sʽ

Sʽ

...

参考文献をもっと見る