リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「疾患特異的ヒトiPS細胞を用いた新規ADPKD病態モデルの作製」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

疾患特異的ヒトiPS細胞を用いた新規ADPKD病態モデルの作製

清水, 達也 筑波大学 DOI:10.15068/0002005627

2022.11.24

概要

常染色体優性多発性嚢胞腎(autosomal dominant polycystic kidney disease; ADPKD)は、すべての人種における最も頻度の高い遺伝性疾患の一つであり、遺伝性腎疾患としては全世界の末期腎不全患者の約10%を占める最多の疾患である[1]。有病率は報告により異なるが、疫学調査から推定された本邦の患者数は約31,000人で[2]、慢性透析患者の原疾患割合として3.8%を占めている[3]。諸外国の疫学調査から推定されたADPKD患者の頻度は2,000~4,000人に1人であるが、剖検に基づく頻度はさらに上昇する[4]。

 腎臓においては、加齢とともに多数の嚢胞が進行性に増大し、両側の腎腫大をきたすことが本疾患の特徴であり、腎嚢胞の増大に伴い約半数の患者が60歳までに末期腎不全に至る[4]。本疾患では肝臓や膵臓にも嚢胞が生じ、腎機能の低下のみならず、腎嚢胞や肝嚢胞への細菌感染によって重篤な敗血症に至ることや、嚢胞出血あるいは腫大した腎臓や肝臓による圧迫症状により健康が損なわれる場合もある。その他、腎外症状として血管病変が重要であり、高血圧や心臓弁膜症、脳動脈瘤を合併しやすく、脳動脈瘤の破裂から致死的となる場合もある[5-6]。

 近年、腎嚢胞の増大を抑制し、腎機能低下抑制効果のある薬剤としてバソプレシンV2受容体拮抗薬であるtolvaptanが臨床で使用可能となった[7]。しかし、tolvaptanの適応となる患者が限られることや副作用の問題、腎機能低下を完全に抑制できないことから、有効性のより高い治療法や根本的な治療薬開発が引き続き望まれている。

 ADPKDの主要な原因遺伝子はPKD1(16p13.3)またはPKD2(4q21)であり、それぞれ膜貫通蛋白であるpolycystin1(PC1)またはpolycystin2(PC2)をコードしている。臨床的にADPKDと診断される症例のうち、PKD1に変異を認めるものが約80%、PKD2が約15%を占めるとされ[6,8-9]、患者は通常、原因遺伝子のいずれかにヘテロ接合性変異を有して出生する。家族歴のない孤発例を10~15%に認めるが、これらの一定数がde novo変異による症例と考えられる[6]。PKD1は46個のエクソンからなる巨大な遺伝子で、遺伝子産物であるPC1は4,303アミノ酸からなり、N末端側の長い細胞外領域、11回膜貫通領域およびC末端側の短い細胞内領域から構成される[5]。PC2は968アミノ酸からなる6回膜貫通蛋白であり[5]、N末端およびC末端は細胞内に位置しており、PC1とC末端領域同士が相互作用すると考えられている[10]。末期腎不全に至る平均年齢からPKD1変異の方がPKD2変異よりも重症であり、さらにPKD1の中でもPC1蛋白のtruncatingをきたす変異の方がnon-truncatingの場合よりも重症であるとされている[8]。

この論文で使われている画像

参考文献

[1] A.B. Chapman, O. Devuyst, K.-U. Eckardt, et al., Autosomal dominant polycystic kidney disease (ADPKD): executive summary from a Kidney Disease: Improving Global Outcomes (KDIGO) Controversies Conference, Kidney Int. 88 (2015) 17-27.

[2] E. Higashihara, K. Nutahara, M. Kojima, et al., Prevalence and renal prognosis of diagnosed autosomal dominant polycystic kidney disease in Japan, Nephron 80 (1998) 421-427.

[3] 日本透析医学会:わが国の慢性透析療法の現況.2019年末の慢性透析患者に関する集計.

[4] 成田一衛(監修).エビデンスに基づく多発性嚢胞腎PKD診療ガイドライン2020.東京医学社2020.

[5] K. Skorecki, G.M. Chertow, P.A. Marsden, et al., Brenner and Rector's The Kidney, 10th ed. ELSEVIER 2015.

[6] C. Bergmann, L.M. Guay-Woodford, P.C. Harris, S. Horie, D.J.M. Peters and V.E. Torres. Polycystic kidney disease, Nat. Rev. Dis. Primers 4 (2018) 50.

[7] V.E. Torres, A.B. Chapman, O. Devuyst, et al., Tolvaptan in patients with autosomal dominant polycystic kidney disease, N. Engl. J. Med. 367 (2012) 2407-2418.

[8] E. Cornec-Le Gall, M.P. Audrézet, Y. Le Meur, et al., Genetics and pathogenesis of autosomal dominant polycystic kidney disease: 20 years on, Hum. Mutat. 35 (2014) 1393-1406.

[9] E. Cornec-Le Gall, V.E. Torres and P.C. Harris. Genetic complexity of autosomal dominant polycystic kidney and liver disease, J. Am. Soc. Nephrol. 29 (2018) 13-23.

[10] F. Qian, F.J. Germino, Y. Cai, et al., PKD1 interacts with PKD2 through a probable coiled-coil domain, Nat. Genet. 16 (1997) 179-183.

[11] J. Kaspareit-Rittinghausen, K. Rapp, F. Deerberg, et al., Hereditary polycystic kidney disease associated with osteorenal syndrome in rats, Vet. Pathol. 26 (1989) 195-201.

[12] M. Katsuyama, T. Masuyama, I. Komura, et al., Characterization of a novel polycystic kidney rat model with accompanying polycystic liver, Exp. Anim. 49 (2000) 51–55.

[13] H. Takahashi, J.P. Calvet, D. Dittemore-Hoover, et al., A hereditary model of slowly progressive polycystic kidney disease in the mouse, J. Am. Soc. Nephrol. 1 (1991) 980-989.

[14] S. Nagao, M. Kugita, D. Yoshihara and T. Yamaguchi, Animal models for human PKD, Exp. Anim. 61 (2012) 477-488.

[15] S. Muto, A. Aiba, Y. Saito, et al., Pioglitazone improves the phenotype and molecular defects of a targeted Pkd1 mutant, Hum. Mol. Genet. 11 (2002) 1731-1742.

[16] S. Shibazaki, Z. Yu, S. Nishio, et al., Cyst formation and activation of the extracellular regulated kinase pathway after kidney specific inactivation of Pkd1, Hum. Mol. Genet. 17 (2008) 1505-1516.

[17] V. Patel, L. Li, P. Cobo-Stark, et al., Acute kidney injury and aberrant planar cell polarity induce cyst formation in mice lacking renal cilia, Hum. Mol. Genet. 17 (2008) 1578-1590.

[18] M, Ma, X. Tian, P. Igarashi, et al., Loss of cilia suppresses cyst growth in genetic models of autosomal dominant polycystic kidney disease, Nat. Genet. 45 (2013) 1004-1012.

[19] H. Happé and D.J.M. Peters, Translational research in ADPKD: lessons from animal models, Nat. Rev. Nephrol. 10 (2014) 587-601.

[20] W. Lu, X. Fan, N. Basora, et al., Late onset of renal and hepatic cysts in Pkd1-targeted heterozygotes, Nat. Genet. 21 (1999) 160-161.

[21] T. Nadasdy, Z. Laszik, G. Lajoie, et al., Proliferative activity of cyst epithelium in human renal cystic diseases, J. Am. Soc. Nephrol. 5 (1995) 1462-1468.

[22] X. Song, V. Di Giovanni, N. He, et al., Systems biology of autosomal dominant polycystic kidney disease (ADPKD): computational identification of gene expression pathways and integrated regulatory networks, Hum. Mol. Genet. 18 (2009) 2328-2343.

[23] P.D. Wilson, R.W. Schrier, R.D. Breckon and P.A. Gabow, A new method for studying human polycystic kidney disease epithelia in culture, Kidney Int. 30 (1986) 371-378.

[24] M. Loghman-Adham, S.M. Nauli, C.E. Soto, et al., Immortalized epithelial cells from human autosomal dominant polycystic kidney cysts, Am. J. Physiol. Renal Physiol. 285 (2003) F397-F412.

[25] D.P. Wallace, J.J. Grantham and L.P. Sullivan, Chloride and fluid secretion by cultured human polycystic kidney cells, Kidney Int. 50 (1996) 1327-1336.

[26] T.H. Booij, L.S. Price and E.H.J. Danen, 3D Cell-Based Assays for Drug Screens: Challenges in Imaging, Image Analysis, and High-Content Analysis, SLAS Discov. 24 (2019) 615-627.

[27] T. Tsukiyama, K. Kobayashi, M. Nakaya, et al., Monkeys mutant for PKD1 recapitulate human autosomal dominant polycystic kidney disease, Nat. Commun. 10 (2019) 5517.

[28] V.E. Torres and P.C. Harris, Strategies targeting cAMP signaling in the treatment of polycystic kidney disease, J. Am. Soc. Nephrol. 25 (2014) 18- 32.

[29] T. Seeger-Nukpezah, D.M. Geynisman, A.S. Nikonova, et al., The hallmarks of cancer: relevance to the pathogenesis of polycystic kidney disease, Nat. Rev. Nephrol. 11 (2015) 515-534.

[30] M. Ma, A.-R. Gallagher and S. Somlo, Ciliary Mechanisms of Cyst Formation in Polycystic Kidney Disease, Cold Spring Harb. Perspect. Biol. 9 (2017) a028209.

[31] V. Padovano, C. Podrini, A. Boletta and M.J. Caplan, Metabolism and mitochondria in polycystic kidney disease research and therapy, Nat. Rev. Nephrol. 14 (2018) 678-687.

[32] L.F. Menezes and G.G. Germino, The pathobiology of polycystic kidney disease from a metabolic viewpoint, Nat. Rev. Nephrol. 15 (2019) 735-749.

[33] M.B. Lanktree, A. Haghighi, I. di Bari, et al., Insights into Autosomal Dominant Polycystic Kidney Disease from Genetic Studies, Clin. J. Am. Soc. Nephrol. 16 (2021) 790-799.

[34] F.T. Chebib, C.R. Sussman, X. Wang, et al., Vasopressin and disruption of calcium signalling in polycystic kidney disease, Nat. Rev. Nephrol. 11 (2015) 451-464.

[35] S.M. Nauli, F.J. Alenghat, Y. Luo, et al., Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells, Nat. Genet. 33 (2003) 129-137.

[36] S.M. Nauli, S. Rossetti, R.J. Kolb, et al., Loss of polycystin-1 in human cyst-lining epithelia leads to ciliary dysfunction, J. Am. Soc. Nephrol. 17 (2006) 1015-1025.

[37] M. Delling, P.G. DeCaen, J.F. Doerner, et al., Primary cilia are specialized calcium signalling organelles, Nature 504 (2013) 311-314.

[38] T. Yamaguchi, S.J. Hempson, G.A. Reif, et al., Calcium restores a normal proliferation phenotype in human polycystic kidney disease epithelial cells, J. Am. Soc. Nephrol. 17 (2006) 178-187.

[39] C. Xu, S. Rossetti, L. Jiang, et al., Human ADPKD primary cyst epithelial cells with a novel, single codon deletion in the PKD1 gene exhibit defective ciliary polycystin localization and loss of flow-induced Ca2+ signaling, Am. J. Physiol. Renal Physiol. 292 (2007) F930-945.

[40] T. Yamaguchi, S. Nagao, M. Kasahara, et al., Renal accumulation and excretion of cyclic adenosine monophosphate in a murine model of slowly progressive polycystic kidney disease, Am. J. Kidney Dis. 30 (1997) 703- 709.

[41] A.K. Ahrabi, F. Jouret, E. Marbaix, et al., Glomerular and proximal tubule cysts as early manifestations of Pkd1 deletion, Nephrol. Dial. Transplant. 25 (2010) 1067-1078.

[42] K. Hopp, C.J. Ward, C.J. Hommerding, et al., Functional polycystin-1 dosage governs autosomal dominant polycystic kidney disease severity, J. Clin. Invest. 122 (2012) 4257-4273.

[43] T.V. Masyuk, A.I. Masyuk, V.E. Torres, et al., Octreotide inhibits hepatic cystogenesis in a rodent model of polycystic liver disease by reducing cholangiocyte adenosine 3′,5′-cyclic monophosphate, Gastroenterology 132 (2007) 1104-1116.

[44] S.N. Kip, L.W. Hunter, Q. Ren, et al., [Ca2+]i reduction increases cellular proliferation and apoptosis in vascular smooth muscle cells: relevance to the ADPKD phenotype, Circ. Res. 96 (2005) 873-880.

[45] Y.-H. Choi, A. Suzuki, S. Hajarnis, et al., Polycystin-2 and phosphodiesterase 4C are components of a ciliary A-kinase anchoring protein complex that is disrupted in cystic kidney diseases, Proc. Natl. Acad. Sci. USA 108 (2011) 10679-10684.

[46] S. Rees, W. Kittikulsuth, K. Roos, et al., Adenylyl cyclase 6 deficiency ameliorates polycystic kidney disease, J. Am. Soc. Nephrol. 25 (2014) 232- 237.

[47] Q. Wang, P. Cobo-Stark, V. Patel, et al., Adenylyl cyclase 5 deficiency reduces renal cyclic AMP and cyst growth in an orthologous mouse model of polycystic kidney disease, Kidney Int. 93 (2018) 403-415.

[48] K. Hopp, C.J. Hommerding, X. Wang, et al., Tolvaptan plus pasireotide shows enhanced efficacy in a PKD1 model, J. Am. Soc. Nephrol. 26 (2015) 39-47.

[49] K. Hanaoka and W.B. Guggino, cAMP regulates cell proliferation and cyst formation in autosomal polycystic kidney disease cells, J. Am. Soc. Nephrol. 11 (2000) 1179-1187.

[50] T. Yamaguchi, S. Nagao, D.P. Wallace, et al., Cyclic AMP activates B-Raf and ERK in cyst epithelial cells from autosomal-dominant polycystic kidneys, Kidney Int. 63 (2003) 1983-1994.

[51] T. Yamaguchi, D.P. Wallace, B.S. Magenheimer, et al., Calcium restriction allows cAMP activation of the B-Raf/ERK pathway, switching cells to a cAMP-dependent growth-stimulated phenotype, J. Biol. Chem. 279 (2004) 40419-40430.

[52] K. Hanaoka, O. Devuyst, E. Schwiebert, et al., A role for CFTR in human autosomal dominant polycystic kidney disease, Am. J. Physiol. 270 (1996) C389-C399.

[53] O. Ibraghimov-Beskrovnaya and T.A. Natoli, mTOR signaling in polycystic kidney disease, Trends Mol. Med. 17 (2011) 625-633.

[54] J.M. Shillingford, K.B. Piontek, G.G. Germino and T. Weimbs, Rapamycin ameliorates PKD resulting from conditional inactivation of Pkd1, J. Am. Soc. Nephrol. 21 (2010) 489-497.

[55] A.L. Serra, D. Poster, A.D. Kistler, et al., Sirolimus and kidney growth in autosomal dominant polycystic kidney disease, N. Engl. J. Med. 363 (2010) 820-829.

[56] G. Walz, K. Budde, M. Mannaa, et al., Everolimus in patients with autosomal dominant polycystic kidney disease, N. Engl. J. Med. 363 (2010) 830-840.

[57] G. Canaud, B. Knebelmann, P.C. Harris, et al., Therapeutic mTOR inhibition in autosomal dominant polycystic kidney disease: What is the appropriate serum level?, Am. J. Transplant. 10 (2010) 1701-1706.

[58] F. Qian, T.J. Watnick, L.F. Onuchic, et al., The molecular basis of focal cyst formation in human autosomal dominant polycystic kidney disease type 1, Cell 87 (1996) 979-987.

[59] T.J. Watnick, V.E. Torres, M.A. Gandolph, et al., Somatic mutation in individual liver cysts supports a two-hit model of cystogenesis in autosomal dominant polycystic kidney disease, Mol. Cell 2 (1998) 247-251.

[60] Q. Qian, L.W. Hunter, M. Li, et al., Pkd2 haploinsufficiency alters intracellular calcium in vascular smooth muscle cells, Hum. Mol. Genet. 12 (2003) 1875-1880.

[61] N. Morel, G. Vandenberg, A.K. Ahrabi, et al., PKD1 haploinsufficiency is associated with altered vascular reactivity and abnormal calcium signaling in the mouse aorta, Pflugers Arch. 457 (2009) 845-856.

[62] M.Y. Chang, E. Parker, S. Ibrahim, et al., Haploinsufficiency of Pkd2 is associated with increased tubular cell proliferation and interstitial fibrosis in two murine Pkd2 models. Nephrol. Dial. Transplant. 21 (2006) 2078-2084.

[63] A. Taguchi, Y. Kaku, T. Ohmori, et al., Redefining the in vivo origin of metanephric nephron progenitors enables generation of complex kidney structures from pluripotent stem cells, Cell Stem Cell 14 (2014) 53-67.

[64] M. Takasato, P.X. Er, H.S. Chiu, et al., Kidney organoids from human iPS cells contain multiple lineages and model human nephrogenesis, Nature 526 (2015) 564-568.

[65] R. Morizane, A.Q. Lam, B.S. Freedman, et al., Nephron organoids derived from human pluripotent stem cells model kidney development and injury, Nature Biotechnol. 33 (2015) 1193-1200.

[66] H. Tsujimoto, T. Kasahara, S.-I. Sueta, et al., A modular differentiation system maps multiple human kidney lineages from pluripotent stem cells, Cell Rep, 31 (2020) 107476.

[67] F. Costantini and R. Kopan, Patterning a complex organ: branching morphogenesis and nephron segmentation in kidney development, Dev. Cell 18 (2010) 698-712.

[68] A. Kobayashi, M.T. Valerius, J.W. Mugford, et al., Six2 defines and regulates a multipotent self-renewing nephron progenitor population throughout mammalian kidney development, Cell Stem Cell 3 (2008) 169- 181.

[69] S.E. Howden, S.B. Wilson, E. Groenewegen, et al., Plasticity of distal nephron epithelia from human kidney organoids enables the induction of ureteric tip and stalk, Cell Stem Cell 28 (2021) 671-684.

[70] E. Garreta, P. Prado, C. Tarantino, et al., Fine tuning the extracellular environment accelerates the derivation of kidney organoids from human pluripotent stem cells, Nature Mater. 18 (2019) 397-405.

[71] J.H. Low, P. Li, E.G.Y. Chew, et al., Generation of human PSC-derived kidney organoids with patterned nephron segments and a de novo vascular network, Cell Stem Cell 25 (2019) 373-387.

[72] A. Subramanian, E.-H. Sidhom, M. Emani, et al., Single cell census of human kidney organoids shows reproducibility and diminished off-target cells after transplantation, Nature Commun. 10 (2019) 5462.

[73] P. Karagiannis, K. Takahashi, M. Saito, et al., Induced Pluripotent Stem Cells and Their Use in Human Models of Disease and Development, Physiol. Rev. 99 (2019) 79-114.

[74] T.A. Forbes, S.E. Howden, K. Lawlor, et al., Patient-iPSC-derived kidney organoids show functional validation of a ciliopathic renal phenotype and reveal underlying pathogenetic mechanisms, Am. J. Hum. Genet. 102 (2018) 816-831.

[75] B.S. Freedman, C.R. Brooks, A.Q. Lam, et al., Modelling kidney disease with CRISPR-mutant kidney organoids derived from human pluripotent epiblast spheroids, Nat. Commun. 6 (2015) 8715.

[76] N.M. Cruz, X. Song, S.M. Czerniecki, et al., Organoid cystogenesis reveals a critical role of microenvironment in human polycystic kidney disease, Nat. Mater. 16 (2017) 1112-1119.

[77] S.M. Czerniecki, N.M. Cruz, J.L. Harder, et al., High-throughput screening enhances kidney organoid differentiation from human pluripotent stem cells and enables automated multidimensional phenotyping, Cell Stem Cell 22 (2018) 929-940.

[78] K. Okita, T. Yamakawa, Y. Matsumura, et al., An efficient nonviral method to generate integration-free human-induced pluripotent stem cells from cord blood and peripheral blood cells, Stem Cells 31 (2013) 458-466.

[79] T. Toyohara, S.-I. Mae, S.-I. Sueta, et al., Cell therapy using human induced pluripotent stem cell-derived renal progenitors ameliorates acute kidney injury in mice, Stem Cells Transl. Med. 4 (2015) 980-992.

[80] T. Ameku, D. Taura, M. Sone, et al., Identification of MMP1 as a novel risk factor for intracranial aneurysms in ADPKD using iPSC models, Sci. Rep. 6 (2015) 30013.

[81] K. Ishida, H. Xu, N. Sasakawa, et al., Site-specific randomization of the endogenous genome by a regulatable CRISPR-Cas9 piggyBac system in human cells, Sci. Rep. 8 (2018) 310.

[82] W. Lu, B. Peissel, H. Babakhanlou, et al., Perinatal lethality with kidney and pancreas defects in mice with a targetted Pkd1 mutation, Nat. Genet. 17 (1997) 179-181.

[83] T.A. Natoli, T.C. Gareski, W.R. Dackowski, et al., Pkd1 and Nek8 mutations affect cell-cell adhesion and cilia in cysts formed in kidney organ cultures, Am. J. Physiol. Renal Physiol. 294 (2008) F73-83.

[84] K. Jansson, A.-N.T. Nguyen, B.S. Magenheimer, et al., Endogenous concentrations of ouabain act as a cofactor to stimulate fluid secretion and cyst growth of in vitro ADPKD models via cAMP and EGFR-Src-MEK pathways, Am. J. Physiol. Renal Physiol. 303 (2012) F982-990.

[85] S. Nishio, M. Hatano, M. Nagata, et al., Pkd1 regulates immortalized proliferation of renal tubular epithelial cells through p53 induction and JNK activation, J. Clin. Invest. 115 (2005) 910-918.

[86] B. Yang, N.D. Sonawane, D. Zhao, et al., Small-molecule CFTR inhibitors slow cyst growth in polycystic kidney disease, J. Am. Soc. Nephrol. 19 (2008) 1300-1310.

[87] S. Kuraoka, S. Tanigawa, A. Taguchi, et al. PKD1-dependent renal cystogenesis in human induced pluripotent stem cell-derived ureteric bud/collecting duct organoids. J. Am. Soc. Nephrol. 31 (2020) 2355-2371.

[88] R.D. Gilbert, P. Sukhtankar, K. Lachlan and D.J. Fowler, Bilineal inheritance of PKD1 abnormalities mimicking autosomal recessive polycystic disease, Pediatr. Nephrol. 28 (2013) 2217-2220.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る