リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Alteration of the assembly of staphylococcal pore forming toxin through grafting the stem domain」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Alteration of the assembly of staphylococcal pore forming toxin through grafting the stem domain

GHANEM NOURAN MOHAMED ABDELRAOUF MOHAMED 東北大学

2022.03.25

概要

Staphylococcus aureus secrete various hemolytic β-pore forming toxins (β-PFTs) such as the one- component α-hemolysins (α-HL) and the two-component γ-hemolysins (γ-HL), which share the presence of three domains: cap, rim and stem. Both toxins are secreted as water soluble monomers and bind to the erythrocyte membrane. Then, the monomers on the erythrocyte membrane assemble together and the stem domains undergo various structural changes until transmembrane β-barrel pores are formed in the membrane, which results in the lysis of the erythrocytes. α-HL forms a homogenous heptameric pore, while γ-hemolysin form a heterogenous octameric pore composed of four of each of F-component (LukF) and S-component (Hlg2) protomers. Since PFTs have been used as materials for the nanopore sensors, the information about their functional features is utilized to evolve new custom protein-engineered PFTs. Yet, designing a β-barrel PFTs is challenging, because of the large conformational changes that occur to assemble the transmembrane pore. Here, mainly six chimeric mutants having whole or part of the stem domain grafted from either the LukF or Hlg2 to the one- component α-HL were designed to study the design principles of the β-barrel. Both the electron microscopy and biochemical analyses showed that one of the designed α-HL chimeras behave as a homogenous heptameric PFT, while the other participate as both homogenous heptameric and heterogenous two-component heptameric and octameric PFT. Moreover, all chimeric mutants were able to self-assemble into stable SDS-resistant oligomers alike α-HL. Taking all findings together, the important role of the domains for these PFTs is discussed. Based on our research outcome, appealing clues for the engineering of staphylococcal PFTs were acquired, which could lead to inspiring applications.

参考文献

1 Iacovache, I., Degiacomi, M. T. and van der Goot, F. G. (2012) 5.9 Pore-Forming Toxins (Egelman, E. H. B. T.-C. B., ed.), pp 164–188, Elsevier, Amsterdam.

2 Gilbert, R. J. C. (2002) Pore-forming toxins. Cellular and Molecular Life Sciences CMLS 59, 832–844.

3 Los, F. C. O., Randis, T. M., Aroian, R. V and Ratner, A. J. (2013) Role of pore-forming toxins in bacterial infectious diseases. Microbiology and molecular biology reviews : MMBR, American Society for Microbiology 77, 173–207.

4 Peraro, M. D. and Van Der Goot, F. G. (2016, February 1) Pore-forming toxins: Ancient, but never really out of fashion. Nature Reviews Microbiology, Nature Publishing Group.

5 Masalha, M., Borovok, I., Schreiber, R., Aharonowitz, Y. and Cohen, G. (2001) Analysis of transcription of the Staphylococcus aureus aerobic class Ib and anaerobic class III ribonucleotide reductase genes in response to oxygen. Journal of bacteriology, American Society for Microbiology 183, 7260–7272.

6 Oliveira, D., Borges, A. and Simões, M. (2018) Staphylococcus aureus toxins and their molecular activity in infectious diseases. Toxins 10.

7 Spaan, A. N., Van Strijp, J. A. G. and Torres, V. J. (2017, June 13) Leukocidins: Staphylococcal bi-component pore-forming toxins find their receptors. Nature Reviews Microbiology, Nature Publishing Group.

8 Seilie, E. S. and Bubeck Wardenburg, J. (2017) Staphylococcus aureus pore-forming toxins: The interface of pathogen and host complexity. Seminars in Cell & Developmental Biology 72, 101–116.

9 Berube, B. J. and Wardenburg, J. B. (2013, June 13) Staphylococcus aureus α-toxin: Nearly a century of intrigue. Toxins, Multidisciplinary Digital Publishing Institute (MDPI).

10 Cheley, S., S Malghani, M., Song, L., Hobaugh, M., Gouaux, E., Yang, J. and Bayley, H.(1997) Spontaneous oligomerization of a staphylococcal α-hemolysin conformally constrained by removal of residues that form the transmembrane β-barrel. Protein engineering.

11 Yamashita, K., Kawai, Y., Tanaka, Y., Hirano, N., Kaneko, J., Tomita, N., Ohta, M., Kamio, Y., Yao, M. and Tanaka, I. (2011) Crystal structure of the octameric pore of staphylococcal γ-hemolysin reveals the β-barrel pore formation mechanism by two components. Proceedings of the National Academy of Sciences of the United States of America 108, 17314–17319.

12 Yamashita, D., Sugawara, T., Takeshita, M., Kaneko, J., Kamio, Y., Tanaka, I., Tanaka, Y. and Yao, M. (2014) Molecular basis of transmembrane beta-barrel formation of staphylococcal pore-forming toxins. Nature Communications, Nature Publishing Group 5.

13 Dalla Serra, M., Coraiola, M., Viero, G., Comai, M., Potrich, C., Ferreras, M., Baba-Moussa, L., Colin, D. A., Menestrina, G., Bhakdi, S., et al. (2005) Staphylococcus aureus Bicomponent γ-Hemolysins, HlgA, HlgB, and HlgC, Can Form Mixed Pores Containing All Components. Journal of Chemical Information and Modeling, American Chemical Society 45, 1539–1545.

14 Nguyen, V. T., Higuchi, H. and Kamio, Y. (2002) Controlling pore assembly of staphylococcal γ-haemolysin by low temperature and by disulphide bond formation in double-cysteine LukF mutants. Molecular Microbiology, Wiley/Blackwell (10.1111) 45, 1485–1498.

15 Koo, S., Cheley, S. and Bayley, H. (2019) Redirecting Pore Assembly of Staphylococcal α- Hemolysin by Protein Engineering. ACS Central Science, American Chemical Society 5, 629–639.

16 Sugawara-Tomita, N., Tomita, T. and Kamio, Y. (2002) Stochastic assembly of two- component staphylococcal γ-hemolysin into heteroheptameric transmembrane pores with alternate subunit arrangements in ratios of 3:4 and 4:3. Journal of Bacteriology 184, 4747–4756.

17 Fackrell, H. B. and Wiseman, G. M. (1976) Properties of the gamma haemolysin of Staphylococcus aureus “Smith 5R.” Journal of General Microbiology 92, 11–24.

18 Gouaux, E., Hobaugh, M. and Song, L. (1997) alpha-Hemolysin, gamma-hemolysin, and leukocidin from Staphylococcus aureus: distant in sequence but similar in structure. Protein Science : A Publication of the Protein Society, Cold Spring Harbor Laboratory Press 6, 2631–2635.

19 Song, L., Hobaugh, M. R., Shustak, C., Cheley, S., Bayley, H. and Gouaux, J. E. (1996) Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore. Science 274, 1859 LP – 1865.

20 Banerji, R., Karkee, A., Kanojiya, P. and Saroj, S. D. (2021) Pore-forming toxins of foodborne pathogens. Comprehensive Reviews in Food Science and Food Safety, John Wiley & Sons, Ltd 20, 2265–2285.

21 Gurnev, A. P. and Nestorovich, M. E. (2014) Channel-Forming Bacterial Toxins in Biosensing and Macromolecule Delivery. Toxins.

22 Walker, B. and Bayley, H. (1994) A Pore-forming protein with a protease-activated trigger. Protein Engineering, Design and Selection 7, 91–97.

23 Tu, Y.-M., Song, W., Ren, T., Shen, Y., Chowdhury, R., Rajapaksha, P., Culp, T. E., Samineni, L., Lang, C., Thokkadam, A., et al. (2020) Rapid fabrication of precise high- throughput filters from membrane protein nanosheets. Nature Materials 19, 347–354.

24 Kasianowicz, J. J., Balijepalli, A. K., Ettedgui, J., Forstater, J. H., Wang, H., Zhang, H. and Robertson, J. W. F. (2016) Analytical applications for pore-forming proteins. Biochimica et Biophysica Acta (BBA) - Biomembranes 1858, 593–606.

25 Guan, X., Gu, L.-Q., Cheley, S., Braha, O. and Bayley, H. (2005) Stochastic Sensing of TNT with a Genetically Engineered Pore. ChemBioChem, John Wiley & Sons, Ltd 6, 1875–1881.

26 Di Muccio, G., Rossini, A. E., Di Marino, D., Zollo, G. and Chinappi, M. (2019) Insights into protein sequencing with an α-Hemolysin nanopore by atomistic simulations. Scientific Reports 9, 6440.

27 Zou, J.-T., Jing, H.-M., Yuan, Y., Lei, L.-H., Chen, Z.-F., Gou, Q., Xiong, Q.-S., Zhang, X.-L., Zhao, Z., Zhang, X.-K., et al. (2021) Pore-forming alpha-hemolysin efficiently improves the immunogenicity and protective efficacy of protein antigens. PLoS pathogens, Public Library of Science 17, e1009752–e1009752.

28 Tan, C. S., Fleming, A. M., Ren, H., Burrows, C. J. and White, H. S. (2018) γ-Hemolysin Nanopore Is Sensitive to Guanine-to-Inosine Substitutions in Double-Stranded DNA at the Single-Molecule Level. Journal of the American Chemical Society, American Chemical Society 140, 14224–14234.

29 Joh, N. H., Grigoryan, G., Wu, Y. and DeGrado, W. F. (2017) Design of self-assembling transmembrane helical bundles to elucidate principles required for membrane protein folding and ion transport. Philosophical transactions of the Royal Society of London. Series B, Biological sciences 372.

30 Lu, P., Min, D., DiMaio, F., Wei, K. Y., Vahey, M. D., Boyken, S. E., Chen, Z., Fallas, J. A., Ueda, G., Sheffler, W., et al. (2018) Accurate computational design of multipass transmembrane proteins. Science 359, 1042 LP – 1046.

31 Vorobieva, A. A., White, P., Liang, B., Horne, J. E., Bera, A. K., Chow, C. M., Gerben, S., Marx, S., Kang, A., Stiving, A. Q., et al. (2021) De novo design of transmembrane β barrels. Science 371, eabc8182.

32 Dou, J., Vorobieva, A. A., Sheffler, W., Doyle, L. A., Park, H., Bick, M. J., Mao, B., Foight, G. W., Lee, M. Y., Gagnon, L. A., et al. (2018) De novo design of a fluorescence-activating β-barrel. Nature 561, 485–491.

33 Dawson, W. M., Rhys, G. G. and Woolfson, D. N. (2019) Towards functional de novo designed proteins. Current Opinion in Chemical Biology 52, 102–111.

34 Yang, C., Sesterhenn, F., Bonet, J., van Aalen, E. A., Scheller, L., Abriata, L. A., Cramer, J. T., Wen, X., Rosset, S., Georgeon, S., et al. (2021) Bottom-up de novo design of functional proteins with complex structural features. Nature Chemical Biology 17, 492–500.

35 DuMont, A. L. and Torres, V. J. (2014) Cell targeting by the Staphylococcus aureus pore- forming toxins: it’s not just about lipids. Trends in microbiology 22, 21–27.

36 Stoddart, D., Ayub, M., Höfler, L., Raychaudhuri, P., Klingelhoefer, J. W., Maglia, G., Heron, A. and Bayley, H. (2014) Functional truncated membrane pores. Proceedings of the National Academy of Sciences 111, 2425 LP – 2430.

37 Fiaschi, L., Di Palo, B., Scarselli, M., Pozzi, C., Tomaszewski, K., Galletti, B., Nardi-Dei, V., Arcidiacono, L., Mishra, R. P. N., Mori, E., et al. (2016) Auto-Assembling Detoxified Staphylococcus aureus Alpha-Hemolysin Mimicking the Wild-Type Cytolytic Toxin. Clinical and vaccine immunology : CVI, American Society for Microbiology 23, 442–450.

38 Panchal, R. G. and Bayley, H. (1995) Interactions between residues in staphylococcal α- hemolysin revealed by reversion mutagenesis. Journal of Biological Chemistry 270, 23072– 23076.

39 Qiu, J., Niu, X., Dong, J., Wang, D., Wang, J., Li, H., Luo, M., Li, S., Feng, H. and Deng, X. (2012) Baicalin Protects Mice From Staphylococcus aureus Pneumonia Via Inhibition of the Cytolytic Activity of α-Hemolysin. The Journal of Infectious Diseases 206, 292–301.

40 Ghanem, N., Kanagami, N., Matsui, T., Takeda, K., Kaneko, J., Shiraishi, Y., Choe, C. A., Uchikubo-Kamo, T., Shirouzu, M., Hashimoto, T., et al. (2022) Chimeric mutants of staphylococcal hemolysin, which act as both one-component and two-component hemolysin, created by grafting the stem domain. The FEBS Journal, John Wiley & Sons, Ltd n/a.

41 Tanaka, Y., Hirano, N., Kaneko, J., Kamio, Y., Yao, M. and Tanaka, I. (2011) 2-Methyl-2,4- pentanediol induces spontaneous assembly of staphylococcal α-hemolysin into heptameric pore structure. Protein science : a publication of the Protein Society, Wiley Subscription Services, Inc., A Wiley Company 20, 448–456.

42 Chica, R. A. (2015) Protein engineering in the 21st century. Protein science : a publication of the Protein Society, Blackwell Publishing Ltd 24, 431–433.

43 Dolly, J. O. and Wang, J. (2015) Engineering of botulinum neurotoxins as novel therapeutic tools. In The Comprehensive Sourcebook of Bacterial Protein Toxins (Alouf, J., Ladant, D., and Popoff, M. R. B. T.-T. C. S. of B. P. T. (Fourth E., eds.), pp 995–1015, Academic Press, Boston.

44 Geng, A. (2014) Chapter 13 - Genetic Transformation and Engineering of Trichoderma reesei for Enhanced Enzyme Production. In Biotechnology and Biology of Trichoderma (Gupta, V. K., Schmoll, M., Herrera-Estrella, A., Upadhyay, R. S., Druzhinina, I., and Tuohy, M. G. B. T.-B. and B. of T., eds.), pp 193–200, Elsevier, Amsterdam.

45 Marshall, G. R. and Taylor, C. M. (2006) Introduction to Computer-Assisted Drug Design – Overview and Perspective for the Future. In In Comprehensive Medicinal Chemistry II (Taylor, J. B., and Triggle, D. J. B. T.-C. M. C. I. I., eds.), pp 13–41, Elsevier, Oxford.

46 Curnow, P. (2019) Designing minimalist membrane proteins. Biochemical Society Transactions 47, 1233–1245.

47 Stapleton, J. A., Whitehead, T. A. and Nanda, V. (2015) Computational redesign of the lipid- facing surface of the outer membrane protein OmpA. Proceedings of the National Academy of Sciences 112, 9632 LP – 9637.

48 Montoya, M. and Gouaux, E. (2003) β-Barrel membrane protein folding and structure viewed through the lens of α-hemolysin. Biochimica et Biophysica Acta (BBA) - Biomembranes 1609, 19–27.

49 Gouaux, E. (1998) α-Hemolysin fromStaphylococcus aureus:An Archetype of β-Barrel, Channel-Forming Toxins. Journal of Structural Biology 121, 110–122.

50 Roblin, P., Guillet, V., Joubert, O., Keller, D., Erard, M., Maveyraud, L., Prévost, G. and Mourey, L. (2008) A covalent S-F heterodimer of leucotoxin reveals molecular plasticity of β-barrel pore-forming toxins. Proteins: Structure, Function, and Bioinformatics, John Wiley & Sons, Ltd 71, 485–496.

51 Du, Y., Liu, L., Zhang, C. and Zhang, Y. (2018) Two residues in <em>Staphylococcus aureus</em> α-hemolysin related to hemolysis and self-assembly. Infection and Drug Resistance, Dove Press Volume 11, 1271–1274.

52 Kawate, T. and Gouaux, E. (2003) Arresting and releasing Staphylococcal alpha-hemolysin at intermediate stages of pore formation by engineered disulfide bonds. Protein science : a publication of the Protein Society, Cold Spring Harbor Laboratory Press 12, 997–1006.

53 Takeda, K., Tanaka, Y., Abe, N. and Kaneko, J. (2018) Intermolecular ionic interactions serve as a possible switch for stem release in the staphylococcal bi-component toxin for β- barrel pore assembly. Toxicon 155, 43–48.

54 Sugawara, T., Yamashita, D., Kato, K., Peng, Z., Ueda, J., Kaneko, J., Kamio, Y., Tanaka, Y. and Yao, M. (2015) Structural basis for pore-forming mechanism of staphylococcal α- hemolysin. Toxicon, Pergamon 108, 226–231.

55 Sugawara, T., Yamashita, D., Tanaka, Y., Kaneko, J., Kamio, Y., Tanaka, I. and Yao, M. (2013) Preliminary X-ray crystallographic study of staphylococcal α-haemolysin monomer. Acta crystallographica. Section F, Structural biology and crystallization communications, International Union of Crystallography 69, 868–870.

56 Mastronarde, D. N. (2005) Automated electron microscope tomography using robust prediction of specimen movements. Journal of Structural Biology 152, 36–51.

57 Zivanov, J., Nakane, T., Forsberg, B. O., Kimanius, D., Hagen, W. J., Lindahl, E. and Scheres, S. H. (2018) New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife, eLife Sciences Publications, Ltd 7, e42166.

58 Rohou, A. and Grigorieff, N. (2015) CTFFIND4: Fast and accurate defocus estimation from electron micrographs. Journal of Structural Biology 192, 216–221.

59 Wagner, T., Merino, F., Stabrin, M., Moriya, T., Antoni, C., Apelbaum, A., Hagel, P., Sitsel, O., Raisch, T., Prumbaum, D., et al. (2019) SPHIRE-crYOLO is a fast and accurate fully automated particle picker for cryo-EM. Communications Biology 2, 218.

60 Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C. and Ferrin, T. E. (2004) UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, John Wiley & Sons, Ltd 25, 1605–1612.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る