リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「GETZLER’S SYMBOL CALCULUS AND THE COMPOSITION OF DIFFERENTIAL OPERATORS ON CONTACT RIEMANNIAN MANIFOLDS」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

GETZLER’S SYMBOL CALCULUS AND THE COMPOSITION OF DIFFERENTIAL OPERATORS ON CONTACT RIEMANNIAN MANIFOLDS

Nagase, Masayoshi 大阪大学 DOI:10.18910/93061

2023.10

概要

operators by unifying two kinds of ideas: that of Widom ([14], [15]) about symbol calculus
on Riemannian manifold and that of Alvarez-Gaum´e ([1]) who used the Clifford variables
to propose a suitable filtration of symbol space. Getzler’s symbol calculus simplifies the
calculation of the principal part, or the top grading part (cf. [4], (2.10)), of the composite of
symbols ([7, Theorems 2.7 and 3.5]) and consequently provides a remarkably short proof of
the Atiyah-Singer index theorem for the Dirac operator ([7, §3], [8], [1]).
In this paper, on a contact Riemannian manifold with contact distribution H, following
Getzler’s idea we will introduce a similar symbol calculus of H-pseudodifferential operators,
which will turn out to be an effective tool for understanding the contact Riemannian structure from the viewpoint of calculus. The manifold possesses a canonical Spinc structure, the
Clifford variables associated with which provide similarly a filtration of symbol space, so
that Getzler’s idea can be applicable. The main result in this paper is Theorem 3.5, which
expressly offers an explicit formula for the top grading part of the composite of polynomial
symbols, that is, the symbols of H-differential operators. In the spin manifold case its counterpart is [7, Theorem 2.7], which was certified by using the Campbell-Hausdorff formula.
To prove Theorem 3.5, we will employ not the CH formula but the formula (1.1), which
gives an explicit expression of the connection coefficients of the hermitian Tanno connection. The CH formula is so daunting that Benameur-Heitsch [4], who applied Getzler’s idea
to the case of foliated spin manifold, used Atiyah-Bott-Patodi’s formula [2, Proposition 3.7]
for the proof of [4, Theorem 4.6] which is a foliation version of [7, Theorem 2.7]. Their idea
certainly led us to the application of (1.1), but the proof itself of the formula (3.10), which
is an essential part of Theorem 3.5, does not follow their strategy in [4, §4]. Our approach
2020 Mathematics Subject Classification. Primary 58J40; Secondary 53D35, 35S05.
The author was partially supported by JSPS KAKENHI Grant Number JP21K03219. ...

この論文で使われている画像

参考文献

[1] L. Alvarez-Gaum´e: Supersymmetry and the Atiyah-Singer index theorem, Commun. Math. Phys. 90 (1983),

161–173.

[2] M.F. Atiyah, R. Bott and V.K. Patodi: On the heat equation and the index theorem, Invent. Math. 19 (1973),

279–330.

[3] R. Beals and P. Greiner: Calculus on Heisenberg Manifolds, Ann. Math. Studies 119, Princeton Univ. Press,

Princeton, 1988.

[4] M.-T. Benameur and J.L. Heitsch: A symbol calculus for foliations, J. Noncommut. Geom. 11 (2017),

1141–1194.

[5] J. Block and J. Fox: Asymptotic pseudodifferential operators and index theory; in Geometric and topological invariants of elliptic operators (Brunswick, ME, 1988), Contemp. Math. 105, Amer. Math. Soc.,

Providence, RI, 1990, 1–32.

[6] S. Dragomir and G. Tomassini: Differential Geometry and Analysis on CR Manifolds, Progress in Math.

246, Birkh¨auser, Boston-Basel-Berlin, 2006.

[7] E. Getzler: Pseudodifferential operators on supermanifolds and the Atiyah-Singer index theorem, Commun.

Math. Phys. 92 (1983), 163–178.

[8] E. Getzler: A short proof of the local Atiyah-Singer index theorem, Topology 25 (1986), 111–117.

[9] E. Getzler: A heat equation approach to Boutet de Monvel’s index theorem for Toeplitz operators; in

Miniconference on Harmonic Analysis and Operator Algebras (Canberra, 1987), Proc. Centre Math. Anal.

Austral. Nat. Univ. 15, 55–65.

[10] M. Nagase: The heat equation for the Kohn-Rossi Laplacian on contact Riemannian manifolds, preprint.

[11] M. Nagase: On the curvature of the Fefferman metric of contact Riemannian manifolds, Tohoku Math. J.

71 (2019), 425–436.

[12] M. Nagase: Dirac operators on the Fefferman spin spaces in almost CR-geometry, Osaka J. Math. 56

(2019), 507–524.

[13] M. Nagase and D. Sasaki: Hermitian Tanno connection and Bochner type curvature tensors of contact

Riemannian manifolds, J. Math. Sci. Univ. Tokyo 25 (2018), 149–169.

[14] H. Widom: Families of pseudodifferential operators; in Topics in Functional Analysis, Academic Press,

New York & London, 1978, 345–395.

[15] H. Widom: A complete symbolic calculus for pseudodifferential operators, Bull. Sci. Math. 104 (1980),

19–63.

Department of Mathematics

Graduate School of Science and Engineering

Saitama University

Saitama-City, Saitama 338–8570

Japan

e-mail: mnagase@rimath.saitama-u.ac.jp

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る