リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Paleogeography of the Northwestern Panthalassa Ocean Restored from the Chichibu–Mikabu Accretionary Complex, the Kanto Mountains, Central Japan」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Paleogeography of the Northwestern Panthalassa Ocean Restored from the Chichibu–Mikabu Accretionary Complex, the Kanto Mountains, Central Japan

冨永,紘平 筑波大学 DOI:10.15068/0002000431

2021.07.20

概要

Paleogeography of seamounts and oceanic plateaus in the Paleozoic to Mesozoic Panthalassa Ocean is reconstructed from ocean plate stratigraphy of the Chichibu–Mikabu accretionary complex. The Early Jurassic Hebiki, the Early Jurassic Sumaizuku, the Middle Jurassic Kamiyoshida, and the Early Cretaceous Kashiwagi units in the Northern Chichibu accretionary complex, the Early Cretaceous Gozenyama (Sambosan) Unit in the Southern Chichibu accretionary complex, and the Mikabu Unit (Mikabu Greenstones) in the Sambagawa Belt are investigated from view point of limestone facies and basalt geochemistry in this study. Particularly, the Kano-yama limestone in the Hebiki Unit contains the latest Carboniferous algal mounds, which provide a paleobiogeographic insight into reef-building organisms of atoll carbonates in the late Paleozoic Panthalassa Ocean. Furthermore, the Mikabu Unit contains igneous rocks derived from a large igneous province (LIP) activity.

The Carboniferous–Permian Kano-yama limestone contains algal mounds composed of reef- building biota such as Palaeoaplysina, Anthracoporella, and other calcimicrobes in its Gzhelian (latest Carboniferous) section. The previous study of the Akiyoshi–Taishaku limestone in the Permian Akiyoshi accretionary complex proved that Palaeoaplysina migrated to the sub- tropical region from the northwest Pangea region because of the Gondwana glaciation. Based on the difference of accretionary ages of the Kano-yama limestone in the Jurassic accretionary complex and the Akiyoshi–Taishaku limestone in the Permian accretionary complex, and reconstructed velocity of plate motion, the occurrence of Palaeoaplysina in the Kano-yama limestone suggests that this algal genus was extended over 5,000 km in the Panthalassa Ocean.

The origin of basaltic rocks in the Kashiwagi, the Gozenyama, and the Mikabu units are estimated by the bulk-rock geochemistry to reveal LIP activities in the Mesozoic. The Kashiwagi Unit contains ocean island basalt (OIB) and oceanic plateau basalt, which is characterized by the depletion of incompatible element and high (Gd/Yb)n ratio. Basalt in the Gozenyama Unit is similar to that of OIB. Basalt in the Mikabu Unit shows characteristics of oceanic plateau basalt. The zircon U–Pb age of anorthosite in the Mikabu Unit is determined to 157 Ma, which is confirmed to represent eruptive age of igneous rocks in the Mikabu Unit by chemical composition of anorthosite.

Accretionary age of the Kashiwagi and the Gozenyama units are precisely constrained by detrital zircon U–Pb age determination of coarse grained clastic rocks such as sandstone. As a result, the youngest single grain ages of sandstone in the Kashiwaig Unit are determined as 127 Ma and 125 Ma. In contrast, 100 Ma and 102 Ma of youngest single grain ages are obtained from sandstone in the Gozenyama Unit. Combined with 117 Ma and 110 Ma of K–Ar metamorphic age of the Kashiwagi and the Mikabu units, it is suggested that the Kashiwagi and the Mikabu units were accreted simultaneously, and were undergone metamorphism by 110 Ma, which is earlier than accretionary age of the Gozenyama Unit.

The paleogeographic reconstruction based on the above chronological data and plate motion, the igneous rocks in the Mikabu Unit was erupted on the inner part of the Izanagi Plate. This paleogeographic model is inconsistent with the opinion of previous studies, which argue that the igneous rocks in the Mikabu Unit was erupted at the triple junction of the Izanagi–Farallon– Pacific plates. The presented data also suggest that the Sambosan (Gozenyama) Unit is not the source rock of the Mikabu Unit.

この論文で使われている画像

参考文献

Adachi, S., Igo, H., 1999. Sphaeroschwagerina (Fusulinacea) from the Kanosan Limestone in the Kanto Mountains, Gunma Prefecture, Japan. Science reports of the Institute of Geoscience, University of Tsukuba.Section B, Geological sciences, 20, 145–167.

Aitchison, J.C., Flood, P.G., 1990. Geochemical constraints on the depositional setting of Palaeozoic cherts from the New England orogen, NSW, eastern Australia. Marine Geology, 94, 79–95.

Algeo, T.J., Heckel, P.H., 2008. The Late Pennsylvanian Midcontinent Sea of North America: A review. Palaeogeography, Palaeoclimatology, Palaeoecology, 268, 205–221.

Anderson, K.D., Beauchamp, B., 2014. Paleobiology and paleoecology of Palaeoaplysina and Eopaleoaplysina new genus in Arctic Canada. Journal of Paleontology, 88, 1056–1071.

Angiolini, L., Campagna, M., Borlenghi, L., Grunt, T., Vachard, D., Vezzoli, G., Vuolo, I., Worthington, J., Nicora, A., Zanchi, A., 2016. Brachiopods from the Cisuralian–Guadalupian of Darvaz, Tajikistan and implications for Permian stratigraphic correlations. Palaeoworld, 25, 539–568.

Antoshkina, A., Königshof, P., 2008. Lower Devonian reef structures in Russia: an example from the Urals. Facies, 54, 233–251.

Arrial, P., Billen, M.I., 2013. Influence of geometry and eclogitization on oceanic plateau subduction. Earth and Planetary Science Letters, 363, 34–43.

Becker, M.J., Dodd, J.R., 1994. Depositional history of a Mississippian crinoidal mound on the east flank of the Illinois basin. Carbonates and Evaporites, 9, 76–88.

Bryan, S.E., Peate, I.U., Peate, D.W., Self, S., Jerram, D.A., Mawby, M.R., Marsh, J.S., Miller, J.A., 2010. The largest volcanic eruptions on Earth. Earth-Science Reviews, 102, 207–229. Chichibu Research Group, 1961. On the Palaeozoic formations and geologic structure of the Kanna-gawa district. Earth Science (Chikyu-Kagaku), 57, 1–11.

Corfu, F., Hanchar, J.M., Hoskin, P.W.O., Kinny, P., 2003. Atlas of Zircon Textures. Reviews in Mineralogy and Geochemistry, 53, 469–500.

Debaille, V., Blichert-Toft, J., Agranier, A., Doucelance, R., Schiano, P., Albarede, F. 2006. Geochemical component relationships in MORB from the Mid-Atlantic Ridge, 22–35°N. Earth and Planetary Science Letters 241, 844–862.

Dickinson, W.R., Gehrels, G.E., 2009. Use of U–Pb ages of detrital zircons to infer maximum depositional ages of strata: A test against a Colorado Plateau Mesozoic database. Earth and Planetary Science Letters, 288, 115–125.

Dunham, R.J. 1962. Classification of carbonate rocks according to depositional texture. Ham,W.E. (Ed.), Classification of carbonate rocks. American Association of Petroleum Geologist Memoir 1, 108–121.

Embry, A.F., Klovan, J.E., 1971. A late Devonian reef tract on northeastern Banks Island, N.W.T. Bulletin of Canadian Petroleum Geology, 19, 730–781.

Endo, K., Watanabe, K. 1993. Fusuline foraminifer from Futagoyama, Kanto Massif, central Japan. Kato,M. (Ed.), Report on the Carbonifeous-Permian boundary. Cooperative Research Grant-in Aid of the Ministry of Education, Culture and Science. Japanese Government, Japan, 184–212, pls, 1–7.

Endo, R., 1959. Stratigraphical and Paleontological Studies of the Later Paleozoic Calcareous Alge in Japan, XIV -Fossil Algae from the Nyugawa Valley in the Hida Massif-. Science Reports of the Saitama University Series B: Biology and Earth Sciences, 3, 117–207.

Endo, R., 1957. Stratigraphical and paleontological studies of the later Paleozoic calcareous algae in Japan, XI. Fossil algae from the Taishaku district, Hiroshima-ken, and Kitami-no-kuni, Hokkaido. Science Reports of the Saitama University Series B: Biology and Earth Sciences, 2, 279-305, pls. 37–44.

Endo, R., 1956. Stratigraphical and paleontological studies of the later Paleozoic calcareous algae in Japan, X. Fossil algae from the Kwantô and Kitakami Mountains. Science Reports of the Saitama University Series B: Biology and Earth Sciences, 2, 221–248, pls. 22–31.

Endo, R., 1953. Stratigraphical and paleontological studies of the later Paleozoic calcareous algae in Japan, VI. —Several interesting species from the Kwantô Mountains Land and a new genus from Kinshôzan, Akasaka, Gifu-ken—. Science Reports of the Saitama University Series B: Biology and Earth Sciences, 1, 97–104, pls. 9.

Endo, R., 1952a. Stratigraphical and paleontological studies of the later Paleozoic calcareous algae in Japan II —Several previously described species from the Sakamotozawa section, Hikoroichi-mura, Kesen-gun, in the Kitakami Mountainous Land—. Transactions and proceedings of the Paleontological Society of Japan. New series, 5, 139–144.

Endo, R., 1952b. Stratigraphical and Paleontological Studies of the Later Paleozoic Calcareous Algae in Japan, IV —Notes on the calcareous algae of the Omi limestone—. Transactions and proceedings of the Paleontological Society of Japan. New series, 1952, 241–248, pls. 23. Endo, R., 1951. Stratigraphical and paleontological studies of the later Paleozoic calcareous algae in Japan I. Several new species from the Sakamotozawa section, Hikoroichi-mura, Kesen-gun, in the Kitakami Mountainous Land. Transactions and proceedings of the Paleontological Society of Japan. New series, 4, 121–129, pls. 10–11.

Endo S., Wallis, S.R., 2017. Structural architecture and low‐grade metamorphism of the Mikabu‐ Northern Chichibu accretionary wedge, SW Japan. Journal of Metamorphic Geology, 35, 695–716.

Endo, S., Yokoyama, S., 2019. Geology of the Motoyama District. Quadrangle Series, 1:50,000, Geological Survay of Japan, AIST.

Flügel, E., Kochansky-Devidé, V., Ramovš, A., 1984. A Middle Permian calcisponge/algal/cement reef: Straža near bled, Slovenia. Facies, 10, 179–255.

Flügel, E. 2010. Microfacies of carbonate rocks. 2nd edn, Springer, Verlag Berlin Heidelberg. Fontaine, H., Lys, M., Tien, N.,Duc, 1988. Some Permian corals from East Peninsular Malaysia:associated microfossils, paleogeographic significance. Journal of Southeast Asian Earth Sciences, 2, 65–78.

Forke, H.C., 2002. Biostratigraphic subdivision and correlation of Uppermost Carboniferous/Lower Permian sediments in the Southern Alps: Fusulinoidean and condont faunas from the Carnic Alps (Austria/Italy), Karavanke Mountains (Slovenia), and Southern Urals (Russia). Facies, 47, 201–275.

Franz, J., Krahmann, G., Lavik, G., Grasse, P., Dittmar, T., Riebesell, U., 2012. Dynamics and stoichiometry of nutrients and phytoplankton in waters influenced by the oxygen minimum zone in the eastern tropical Pacific. Deep Sea Research Part I: Oceanographic Research Papers, 62, 20–31.

Fujimoto, H., 1935a. Geological study of the northern Kanto Mountains (no. 2). Journal of the Geological Society of Japan, 42, 163–181.

Fujimoto, H., 1935b. Geologiral Study of the northern Kanto Mountains (No. 1). Journal of the Geological Society of Japan, 42, 137–151.

Gischler, E., Lomando, A.J., 1999. Recent sedimentary facies of isolated carbonate platforms, Belize-Yucatan system, Central America. Journal of Sedimentary Research, 69, 747–763.

Green, D.H., Ringwood, A.E., 1967. The stability fields of aluminous pyroxene peridotite and garnet peridotite and their relevance in upper mantle structure. Earth and Planetary Science Letters, 3, 151–160.

Guidi, A., Charvet, J., Sato, T., 1984. Finding of Granitic Olistoliths and Pre-Cretaceous Radiolarians in the Northwestern Kanto Mountains, Gunma Prefecture, Central Japan. The Journal of the Geological Society of Japan, 90, 853–856.

Hara, H., Hara, K., 2019. Radiolarian and U–Pb zircon dating of Late Cretaceous and Paleogene Shimanto accretionary complexes, Southwest Japan: Temporal variations in provenance and offset across an out-of-sequence thrust. Journal of Asian Earth Sciences, 170, 29–44.

Hara, H., Nakamura, Y., Hara, K., Kurihara, T., Mori, H., Iwano, H., Danhara, T., Sakata, S., Hirata, T., 2017. Detrital zircon multi-chronology, provenance, and low-grade metamorphism of the Cretaceous Shimanto accretionary complex, eastern Shikoku, Southwest Japan: Tectonic evolution in response to igneous activity within a subduction zone. Island Arc, 26, e12218.

Hara, H., Tominaga, K., 2018. Distribution of the Mikabu greenstones and the Northern Chichibu accretionary comples in the eastern Kanto Mountains: Revision of the Otakatoriyama klippes. Abstracts the 125th Annual Meeting of the Geological Society of Japan, R5-O-10.

Hara, H., Ueno, H., Tsunoda, K., Hisada, K., Shimizu, M., Takeuchi, K., Ozaki, M. 2010. Geology of the Mitsumine District. Quadrangle Series, 1:50,000. Geological Survey of Japan, AIST, 110.

Hashimoto, K., 1979. Bio- and Litho-facies of the Akiyoshi Limestone Group in the southern area of the Akiyoshi Plateau. Bulletin of the Akiyoshi-dai Museum of Natural History, 14, 1–26, pls. 1–12.

Hirajima, T., Isono, T., Itaya, T., 1992. K–Ar age and chemistry of white mica in the Sanbagawa metamorphic rocks in the Kanto Mountains, central Japan. The Journal of the Geological Society of Japan, 98, 445–455.

Hisada, K., Arai, S., 1993. Detrital chrome spinels in the Cretaceous Sanchu sandstone, central Japan: indicator of serpentinite protrusion into a fore-arc region. Palaeogeography, Palaeoclimatology, Palaeoecology, 105, 95–109.

Hisada, K., 1984. Geology of the Paleozoic and Mesozoic strata in the Ashigakubo-Kamozawa area, southern Kanto Mountains. Journal of the Geological Society of Japan, 90, 139–156.

Hisada, K., Karata, Y., Kishida, Y., 1992. Geology of the Yasudo area, northern part of the Kanto Mountains, central Japan. Annual Report, Institution of Geoscience, University of Tsukuba,18, 53–58.

Hisada, K., Kishida, Y., 1987. Earliest Jurassic radiolarian assemblage obtained from the Hebiki Formation of the northern Chichibu Belt in the Kanto Mountains, central Japan. Journal of the Geological Society of Japan, 93, 521–523.

Hisada, K., Kishida, Y., Sashida, K., 1986. Upper Jurassic Chert of the Hashidate Group in the Kanto Mountains, Central Japan. Memoirs of Osaka Kyoiku University Ser. III, 35, 89–94. Hisada, K., Kishida, Y., Ueno, H., Kamikawa, Y., 1989. The Chichibu accretionary complex in the Kanto mountains, central Japan. Journal of the Tectonic Research Group of Japan, 34,85–90.

Hisada, K., Tominaga, K., Sekine, K., Matsuoka, K., Kato, K., 2016. Geology of the northern Chichibu Belt in the Kanto Mountains, central Japan. Journal of the Geological Society of Japan, 122, 325–342.

Horn, I., von Blanckenburg, F., 2007. Investigation on elemental and isotopic fractionation during 196 nm femtosecond laser ablation multiple collector inductively coupled plasma mass spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 62, 410–422.

Ichiyama, Y., Ishiwatari, A., Kimura, J., Senda, R., Kawabata, H., Tatsumi, Y., 2012. Picrites in central Hokkaido: Evidence of extremely high temperature magmatism in the Late Jurassic ocean recorded in an accreted oceanic plateau. Geology, 40, 411–414.

Ichiyama, Y., Ishiwatari, A., Kimura, J., Senda, R., Miyamoto, T., 2014. Jurassic plume-origin ophiolites in Japan: accreted fragments of oceanic plateaus. Contributions to Mineralogy and Petrology, 168, 1019.

Ichiyama, Y., Ishiwatari, A., Koizumi, K., 2008. Petrogenesis of greenstones from the Mino– Tamba belt, SW Japan: Evidence for an accreted Permian oceanic plateau. Lithos; Links Between Ophiolites and LIPs in Earth History, 100, 127–146.

Ishida, K., Nishiyama, K., Kitamura, S., Motoyama, S., Tsujino, Y., Nakao, K., Ozawa, H. 2008. The geology and geomorphology in Koyadaira, upper stream of Anabukigawa area, East Shikoku, Japan. Natural Science Research (Tokushima University) 22, 29–44.

Ishida, K., Nishiyama, K., Nakao, K., Motoyama, S., Tanaka, S., Kozai, T., Ozawa, H. 2007. The Mikabu and Chichibu balts in the Iya-gawa area, Tokushima Prefecture, Shikoku, SW Japan—An integrated research of geology and geomorphology—. Natural Science Research (Tokushima University) 21, 47–64.

Igawa, T., 2003. Microbial contribution to deposition of upper carboniferous and lower Permian seamount-top carbonates, Akiyoshi, Japan. Facies, 48, 61–78.

Igo, H. 1980. Geology in the Kanto Mountains. Igo, H., Nanno, S., Shindo, S., Watanabe, K. (Eds.), Regional Geology of Japan ""Kanto district"". Asakura, Tokyo, 2-–4.

Igo, H., 1972. Conodonts, as a new Index Fossil in Japan. Journal of Geography (Chigaku Zasshi), 81, 142–151.

Isbell, J.L., Henry, L.C., Gulbranson, E.L., Limarino, C.O., Fraiser, M.L., Koch, Z.J., Ciccioli, P.L., Dineen, A.A., 2012. Glacial paradoxes during the late Paleozoic ice age: Evaluating the equilibrium line altitude as a control on glaciation. Gondwana Research, 22, 1–19.

Ishida, N., 2004. Lithostratigraphy of Mesozoic strata and Late Jurassic radiolarian assemblages in the Southern Chichibu terrane in the Hinohara area, southeastern part of the Kanto Massif, central Japan. News of Osaka Micropaleontologists, Special Volume, 13, 89–109.

Isozaki, Y., Maruyama, S., Furuoka, F., 1990. Accreted oceanic materials in Japan. Tectonophysics; Tectonics of Eastern Asia and Western Pacific Continental Margin, 181, 179–205.

Isozaki, Y., 1997. Jurassic accretion tectonics of Japan. Island Arc, 6, 25–51.

Isozaki, Y., Maruyama, S., Aoki, K., Nakama, T., Miyashita, A., Otoh, S., 2010. Geotectonic subdivision of the Japanese Islands Revisited: Categorization and difinition of elements and boundaries of Pacific-type (Miyashiro-type) orogen. Journal of Geography, 119, 999–1053. Iwano, H., Orihashi, Y., Hirata, T., Ogasawara, M., Danhara, T., Horie, K., Hasebe, N., Sueoka, S., Tamura, A., Hayasaka, Y., Katsube, A., Ito, H., Tani, K., Kimura, J., Chang, Q., Kouchi,Y., Haruta, Y., Yamamoto, K., 2013. An inter-laboratory evaluation of OD-3 zircon for use as a secondary U–Pb dating standard. Island Arc, 22, 382–394.

Johnson, J.H., 1963. Pennsylvanian and Permian algae. Quarterly of the Colorado School of Mines, 58, 1–211.

Kamikawa, Y., Hisada, K., Sashida, K., Igo, H., 1997. Geology of the Nanmoku area in the Chichibu Terrane, the northwestern part of the Kanto Mountains, central Japan. Science reports of the Institute of Geoscience, University of Tsukuba.Section B, Geological sciences, 18, 19–38.

Kanmera, K., 1958. Fusulinids from the Yayamadake Limestone of the Hikawa Valley, Kumamoto Prefecture, Kyushu, Japan. Part III. Memories of Faculty of Science, Kyushu University, Series D, Geology, 6, 153–215, pls. 24–35.

Kanmera, K., Sano, H., Isozaki, Y., 1990. Akiyoshi Terrane. Ichikawa,K., Mizutani,S., Hara,I., Hada,S., Yao,A. (Eds.), Pre-Cretateous Terranes of Japan, IGCP Project No.224: Pre-Jurassic Evolution of Eastern Asia. IGCP Project No. 224, Osaka, Japan, 49–62.

Kanto Mountains Research Group, 1994. The Northern Subbelt of the Chichibu Belt along the Kanna River in the Kanto Mountains, central Japan. Earth Science (Chikyu-Kagaku), 48, 83–101.

Kiminami, K., Imaoka, T., 2013. Spatiotemporal variations of Jurassic–Cretaceous magmatism in eastern Asia (Tan-Lu Fault to SW Japan): evidence for flat-slab subduction and slab rollback. Terra Nova, 25, 414–422.

Kimura, G., Sakakibara, M., Okamura, M., 1994. Plumes in central Panthalassa? Deductions from accreted oceanic fragments in Japan. Tectonics, 13, 905–916.

Kimura, K., Bessho, T., Sakamoto, T., Kumon, F., Suzuki, H., 1996. Fission-track ages and their significance of acidic tuff in the Upper Cretaceous Ryujin Formation of the Shimanto Supergroup, Kii Peninsula, Southwest Japan. The Journal of the Geological Society of Japan, 102, 116–124.

Kogiso, T., Tatsumi, Y., Nakano, S., 1997. Trace element transport during dehydration processes in the subducted oceanic crust: 1. Experiments and implications for the origin of ocean island basalts. Earth and Planetary Science Letters, 148, 193–205.

Koike, T., Ikezaki, F., Okamura, S., Takashima, K., 1980. Stratigraphy and geological structure of each place in the Kanto Mountains. Report of Grants-in-Aid for Scientific Reseatch A, 77–86.

Kouchi, Y., Orihashi, Y., Obara, H., Fujimoto, T., Haruta, Y., Yamamoto, K., 2015. Zircon U–Pb dating by 213 nm Nd: YAG laser ablation inductively coupled plasma mass spectrometry: Optimization of the analytical condition to use NIST SRM 610 for Pb/U fractionation correction. Chikyukagaku, 49, 19–35.

Krainer, K., 2007. Late Paleozoic reef mounds of the Carnic Alps (Austria/Italy). Geobios, 40, 625–643.

Krainer, K., 1995. Anthracoporella mounds in the Late Carboniferous Auernig Group, Carnic Alps (Austria). Facies, 33, 195–214.

Krainer, K., Flügel, E., Vachard, D., Joachimski, M.M., 2003. A close look at late carboniferous algal mounds: Schulterkofel, Carnic Alps, Austria. Facies, 49, 325–350.

Krotov, P., 1988. Geologicheskiya izsledovaniya na Zapodnom sklon Solikamskovo i Cherdynskagos Urala. Trudy Geologicheskago Komiteta, 6, 431–434.

Leven, E.Y., 2009. The Upper Carboniferous (Pennsylvanian) and Permian of the Western Tethys: fusulinids, stratigraphy, biostratigraphy. Transactions of the Geological Institute, Russian Academy of Sciences, 590, 1–237.

Ludwig, K.R., 2012. User's manual for Isoplot 3.75: A geochronological toolkit for Microsoft Excel. Berkeley Geochronology Center Special Publication No.5, 1–75.

Machel, H.G., Hunter, I.G., 1994. Facies models for middle to late devonian Shallow-Marine carbonates, with comparisons to modern reefs: a guide for facies analysis. Facies, 30, 155– 176.

Machida, S., Ishii, T., Kimura, J., Awaji, S., Kato, Y., 2008. Petrology and geochemistry of cross- chains in the Izu-Bonin back arc: Three mantle components with contributions of hydrous liquids from a deeply subducted slab. Geochemistry, Geophysics, Geosystems, 9.

Mahoney, J.J., Duncan, R.A., Tejada, M.L.G., Sager, W.W., Bralower, T.J., 2005. Jurassic- Cretaceous boundary age and mid-ocean-ridge–type mantle source for Shatsky Rise. Geology, 33, 185–188.

Mahoney, J.J., Storey, M., Duncan, R.A., Spencer, K.J., Pringle, M., 1993. 1. Geochemistry and Geochronology of Leg 130 Basement Lavas: Nature and Origin of the Ontong Java Plateau. Proceedings of the Ocean Drilling Program, 130, 3–22.

Makimoto, H., Takeuchi, K. 1992. Geology of the Yorii district. With geological sheet map at 1:50,000, Geological Survey of Japan, 136.

Maruyama, S., Isozaki, Y., Kimura, G., Terabayashi, M., 1997. Paleogeographic maps of the Japanese Islands: Plate tectonic synthesis from 750 Ma to the present. Island Arc, 6, 121– 142.

Maslov, V.,P. 1956. Iskopaemye izvestkovye vodrosli SSR (Fossil calcareous algae of the USSR). Akademiya Nauk SSR, Trudy Instituta Geologicheskii Nauk (Transactions of the Academy of Sciences, USSR Geological Institute), Moscow.

Matsuda, T., Isozaki, Y., 1991. Well-documented travel history of Mesozoic pelagic chert in Japan: From remote ocean to subduction zone. Tectonics, 10, 475–499.

Matsuoka, A., Yamakita, S., Sakakibara, M., Hisada, K., 1998. Unit division for the Chichibu Composite Belt from a view point of accretionary tectonics and geology of western Shikoku, Japan. Journal of the Geological Society of Japan, 104, 634–653.

Matsuoka, K., 2014. Finding of reddish brown clastic beds in the Sumaizuku Unit of the Northern Chichibu Belt in the Kanto Mountains, central Japan and its significance. Earth Science (Chikyu-Kagaku), 68, 29–34.

Matsuoka, K., 2013. The Kashiwagi Unit of the Northern Chichibu Belt in the northeastern Kanto Mountains, - Lithofacies , geologica age and oceanic plate stratigraphy -. Earth Science (Chikyu-Kagaku), 67, 101–112.

Matsuoka, K., 2012. Jurassic radiolarians form the Northern Chichibu Belt in the Area between Ashigakubo of Yokoze Town and Kaminaguri of Hanno City in Saitama Prefecture, central Japan. Bulletin of the Saitama Museum of Natural History, 6, 59–68.

Matsuoka, K., 2008. Late Jurassic radiolarians from the clastic beds of the Mikabu Unit in Tokigawa Town, Saitama Prefecture, central Japan. Bulletin of the Saitama Museum of Natural History, 2, 31–36.

Matsuoka, K., 2007. Early Cretaceous radiolarians from the Northern Part of the Chichibu Belt in the northeastern part of the Kanto Mountains, Central Japan. Earth Science (Chikyu- Kagaku), 61, 421–424.

Matsuoka, K., 1999. Late Jurassic radiolarians from red shale on the Mikabu greenstones in the northern margin of Kanto Mountains, Japan. Earth Science (Chikyu Kagaku), 53, 71–74.

Matsuoka, K., Hasegawa, Y., Okimura, Y., Yao, A., 2016. Geology of the Northern Chichibu Belt in the Kagemori, Chichibu City–Ashigakubo, Yokoze Town in the Saitama Prefecture and obtained fusulinid and radiolarian fossils (English translation originally written in Japanese). Bulletins and Reports of Saitama Museum of Rivers, 16, 33–42.

Matthews, K.J., Maloney, K.T., Zahirovic, S., Williams, S.E., Seton, M., Müller, R.D., 2016. Global plate boundary evolution and kinematics since the late Paleozoic. Global and Planetary Change, 146, 226–250.

McDonough, W.F., Sun, S., 1995. The composition of the Earth. Chemical Geology; Chemical Evolution of the Mantle, 120, 223–253.

Merino-Tomé, O., Bahamonde, J.R., Samankassou, E., Villa, E., 2009. The influence of terrestrial run off on marine biotic communities: An example from a thrust-top carbonate ramp (Upper Pennsylvanian foreland basin, Picos de Europa, NW Spain). Palaeogeography, Palaeoclimatology, Palaeoecology, 278, 1–23.

Meurer, W.P., Sturm, M.A., Klein, E.M., Karson, J.A. 2001. Basalt compositions from the Mid- Atlantic Ridge at the SMARK area (22°30′N to 22°50′N) – implications for parental liquid variability at isotopically homogeneous spreading centers. Earth and Planetary Science Letters 186, 451–469.

Mori, R., 1981. Fossil agae from the Kanô-san Limestone in the Kanto Mountains. Bulletin of the Tokyo College of Domestic Science, 21, 23–27.

Motoyama, S., Terado, T., Hirao, N., Ozawa, H., Ishida, K., Hashimoto, T., Nakao, K., Morie, T., Morinaga, H., Fukushima, K., Kasai, T., 2002. Petrological charactersitics of the Mikabu Greenstones and land slide geomorphology distributed in the Sanagochi Village. Bulletin of Awagakkai, 48, 1–12.

Müller, R.D., Seton, M., Zahirovic, S., Williams, S.E., Matthews, K.J., Wright, N.M., Shephard, G.E., Maloney, K.T., Barnett-Moore, N., Hosseinpour, M., Bower, D.J., Cannon, J. 2016. Ocean Basin Evolution and Global-Scale Plate Reorganization Events Since Pangea Breakup. Annual Review of Earth and Planetary Sciences 44, 107–138.

Murray, R.W., 1994. Chemical criteria to identify the depositional environment of chert: general principles and applications. Sedimentary Geology, 90, 213–232.

Nagai, K., 1985. Reef-forming algal chaetetid boundstone found in the Akiyoshi Limestone Group, southwest Japan. Bulletin of the Akiyoshi-dai Museum of Natural History, 20, 1–15, pls. 1–6.

Nagai, K., 1978. Litho- and bio-facies of reef limestones in the Ryugoho Area of the Akiyoshi Limestone Plateau. Bulletin of the Akiyoshi-dai Museum of Natural History, 13, 15–34, pls. 9–16.

Nakamura, M., Nagai, K. . 1985. Algae. Yamaguchi Prefectural Museum (Ed.), Fossils in Yamaguchi Prefecture —Paleozoic—. Yamaguchi Prefectural Museum, Yamaguchi, Japan, 289–327.

Nakanishi, M., Sager, W.W., Klaus, A., 1999. Magnetic lineations within Shatsky Rise, northwest Pacific Ocean: Implications for hot spot-triple junction interaction and oceanic plateau formation. Journal of Geophysical Research: Solid Earth, 104, 7539–7556.

Nakazawa, T., Igawa, T., Ueno, K., Fujikawa, M., 2015. Middle Permian sponge–microencruster reefal facies in the mid-Panthalassan Akiyoshi atoll carbonates: observations on a limestone slab. Facies, 61, 15.

Nakazawa, T., Ueno, K., Fujikawa, M., 2012. Middle Permian sponge?microencruster bioherms in the Akiyoshi Limestone, SW Japan: implications for Late Palaeozoic reef evolution on mid-Panthalassan atolls. Geological Journal, 47, 495–508.

Nakazawa, T., Ueno, K., Kawahata, H., Fujikawa, M., 2011. Gzhelian–Asselian Palaeoaplysina–microencruster reef community in the Taishaku and Akiyoshi limestones, SW Japan: Implications for Late Paleozoic reef evolution on mid-Panthalassan atolls. Palaeogeography, Palaeoclimatology, Palaeoecology, 310, 378–392.

Nakazawa, T., Ueno, K., Nonomura, N., Fujikawa, M., 2015. Microbial community from the Lower Permian (Artinskian–Kungurian) paleoclimatic transition, mid-Panthalassan Akiyoshi atoll, Japan. Palaeogeography, Palaeoclimatology, Palaeoecology, 420, 116–127.

Nishimura, Y., Coombes, D.S., Landis, C.A., Itaya, T., 2000. Continuous metamorphic gradient documented by graphitization and K–Ar age, southwest Otago, New Zealand. American Mineralogist, 85, 1625–1636.

Okubo, M., Horiguchi, M. . 1969. Geology of the Mamba district. Geological sheet map at 1:50,000. Geological Survey of Japan, Japan.

Onoue, T., Sano, H., 2007. Triassic mid-oceanic sedimentation in Panthalassa Ocean: Sambosan accretionary complex, Japan. Island Arc, 16, 173–190.

Onoue, T., Stanley Jr, G.D., 2008. Sedimentary facies from Upper Triassic reefal limestone of the Sambosan accretionary complex in Japan: mid-ocean patch reef development in the Panthalassa Ocean. Facies, 54, 529–547.

Ota, M., 1968. The Akiyoshi Limestone Group: A geoynclinal organic reef complex. Bulletin of the Akiyoshi-dai Science Museum, 5, 1–44, pl. 1–31.

Otoh, S., Shimojo, M., Aoki, K., Nakama, T., Maruyama, S., Yanai, S., 2010. Age Distribution of Detrital Zircons in the Psammitic Schist of the Sanbagawa Belt, Southwest Japan. Journal of Geography (Chigaku Zasshi), 119, 333–346.

Ozawa, H., Motoyama, S., Inoue, S., Kato, Y., Murata, M. 1999. Petrology of basic volcanics of the Mikabu greenstone complex in the eastern Shikoku. Memoirs of the Geological Society of Japan 52, 217–228.

Ozawa, H., Murata, M., Nishumura, H., Itaya, T., 1997. Petrological Feature and Dating of Igneous Rocks of the Mikabu Belt. Bulletin of the Volcanolocigal Society of Japan, 42, S231–S237.

Parvizi, T., Rashidi, K., Vachard, D., 2013. Middle Permian calcareous algae and microproblematica (Dalan Formation, Dena Mountain, High Zagros, SW Iran). Facies, 59, 149–177.

Pearce, J.A., 2008. Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust. Lithos, 100, 14–48.

Pia, J., 1920. Die Siphoneae verticillatae vom Karbon bis zur Kreide. Abh. Zool.-Botan. Ges.Wien, 11, 1–263.

Pollock, M.A., Klein, E.M., Karson, J.A., Coleman, D.S., 2009. Compositions of dikes and lavas from the Pito Deep Rift: Implications for crustal accretion at superfast spreading centers. Journal of Geophysical Research: Solid Earth, 114.

Ponomarenko, E.S., Statsenko, E.O., Urazaeva, M.N., 2014. A hydrozoan interpretation of Palaeoaplysina (enigmatic organisms) based on the canal arrangement and structure. Paleontological Journal, 48, 118–123.

Richards, M.A., Duncan, R.A., Courtillot, V.E., 1989. Flood Basalts and Hot-Spot Tracks: Plume Heads and Tails. Science, 246, 103–107.

Riding, R., 1993. Shamovella obscura: the corrent name for Tubiphytes obscurus (Fossil). Taxon, 42, 71–73.

Riding, R., Guo, L., 1992. Affinity of Tubiphytes. Palaeontology, 35, 37-49.

Rollinson, H.R. 1993. Using geochemical data: evaluation, presentation, interpretation. Longman, London, 352.

Ryther, J.H., 1969. Photosynthesis and Fish Production in the Sea. Science, 166, 72.

Safonova, I., Kojima, S., Nakae, S., Romer, R.L., Seltmann, R., Sano, H., Onoue, T., 2015. Oceanic island basalts in accretionary complexes of SW Japan: Tectonic and petrogenetic implications. Journal of Asian Earth Sciences, 113, Part 1, 508–523.

Safonova, I.Y., Utsunomiya, A., Kojima, S., Nakae, S., Tomurtogoo, O., Filippov, A.N., Koizumi, K., 2009. Pacific superplume-related oceanic basalts hosted by accretionary complexes of Central Asia, Russian Far East and Japan. Gondwana Research, 16, 587–608.

Saito, M., Tsukamoto, H., 1993. Chert breccia, its occurence and radiolarian fossils in the Hichiso- Mugi area, central Mino Terrane, central Japan. Journal of the Geological Society of Japan, 99, 117–133.

Sakakibara, M., Hori, R. S., Murakami, T., 1993. Evidence from radiolarian chert xenoliths for post-Early Jurassic volcanism of the Mikabu greenrocks, Okuki area, western Shikoku, Japan. The Journal of the Geological Society of Japan, 99, 831–833.

Samankassou, E., 2002. Cool-water carbonates in a paleoequatorial shallow-water environment: The paradox of the Auernig cyclic sediments (Upper Pennsylvanian, Carnic Alps, Austria- Italy) and its implications. Geology, 30, 655–658.

Sashida, K., 1992. Northern and Middle Chichibu Belts of the eastern part of the Kanto Mountains,

central Japan. Journal of the Tokyo Geographic Society, 101, 573–593.

Sato, T., Takizawa, S., Kodato, T., 1977. Revision of stratigraphy and structure of the Sakahara Formation at its type locality. Journal of the Geological Society of Japan, 83, 631–637.

Sawada, H., Isozaki, Y., Aoki, S., Sakata, S., Sawaki, Y., Hasegawa, R., Nakamura, Y., 2019. The Late Jurassic magmatic protoliths of the Mikabu greenstones in SW Japan: A fragment of an oceanic plateau in the Paleo-Pacific Ocean. Journal of Asian Earth Sciences, 169, 228–236.

Sekine, K., Iijima, H., Hasegawa, H., 2001. Geology of the Northern part of the Chichibu Belt in the Kanto Mountains. Bulletin of the Saitama Museum of Natural History, 19, 31–44.

Sekine, K., Iijima, H., Saito, Y., 1995. Jurassic radiolarians from the Manba Unit of the Northern Chichibu Belt, Kanto Mountains, central Japan. Bulletin of the National Science Museum Series C (Geology and Paleontology), 21, 1–10.

Senowbari-Daryan, B., Flügel, E., 1993. Tubiphytes Maslov, an enigmatic fossil: classification, fossil record and significance through time. Part I: Discussion of Late Palaeozoic materials. Bollention della Società Paleontologica Italiana Special, 1, 353–382.

Seton, M., Müller, R.D., Zahirovic, S., Gaina, C., Torsvik, T., Shephard, G., Talsma, A., Gurnis, M., Turner, M., Maus, S., Chandler, M., 2012. Global continental and ocean basin reconstructions since 200 Ma. Earth-Science Reviews, 113, 212–270.

Sláma, J., Košler, J., Condon, D.J., Crowley, J.L., Gerdes, A., Hanchar, J.M., Horstwood, M.S.A., Morris, G.A., Nasdala, L., Norberg, N., Schaltegger, U., Schoene, B., Tubrett, M.N., Whitehouse, M.J., 2008. Plešovice zircon — A new natural reference material for U–Pb and Hf isotopic microanalysis. Chemical Geology, 249, 1–35.

Strasser, A., 1986. Ooids in Purbeck limestones (lowermost Cretaceous) of the Swiss and French Jura. Sedimentology, 33, 711–727.

Suyari, K., Kuwano, S., Ishida, K., 1981. Stratigraphy and structure of the Chichibu belt and its relationship with the Sanbagawa belt. Studies on late mesozoic tectonism in Japan, 3, 99– 113.

Taira, A., Tokuyama, H., Sho, W. . 1989. Accretion tectonics and evolution of Japan. ZviBen- Avraham (Ed.), The Evolution of the Pacific Ocean Margins. Oxford University Press, New York Clarendon Press, Oxford, 100–123.

Takahashi, O., 2000. Tectonostratigraphic study of the Chichibu and Shimanto Belts in the Kanto Mountains, central Japan. The Journal of the Geological Society of Japan, 106, 836–852.

Takahashi, O., Ishii, A., 1995. Radiolarian Assemblage-zones in the Jurassic and Cretaceous Sequence in the Kanto Mountains, central Japan. Memories of Faculty of Science, Kyushu University, Series D, Geology, 24, 49–85.

Takano, T., Kawada, S., Arai, J., 1953. The limestone deposit of the Tatoro-san district, west of the Kano-san. Bulletin of the Chichibu Museum of Natural History, 2, 37–43.

Takaoka, Y., 1978. Paleontological studies of Kano-san, Ftago-yama and Shiraishi-yama of Kanto massif, Central Japan. Toho-gakuhou, 28, 101–121.

Takaoka, Y., 1966. Fusulinid from the Mt. Tatoro, Mt. Kano, Mt. Futago and Mt. Shiraishi Areas of the Kanto-massif, Central Japan. Bulletin of the Chichibu Museum of Natural History, 13, 39–70 pls. 5–16.

Takaoka, Y., 1954. About the Gozenyama Formation in the runoff area of Tamagawa River (English translation originally written in Japanese). Studies from the Geological and Mineralogical Institute, Tokyo University of Education, 3, 29–34.

Takeuchi, M., Ohkawa, M., Kawahara, K., Tomita, S., Yokota, H., Tokiwa, T., Furukawa, R., 2015. Redefinition of the Cretaceous terrigenous strata in the northeastern Toyama Prefecture based on U-Pb ages of zircon. The Journal of the Geological Society of Japan, 121, 1–17.

Takizawa, S. 1979. Stratigraphy of the Chichibu Belt in the northern Kanto Mountains. Biostratigraphy of Permian and Triassic, conodonts and holothurian sclerites in Japan. 89– 102.

Tatsumi, Y., Shinjoe, H., Ishizuka, H., Sager, W.W., Klaus, A., 1998. Geochemical evidence for a mid-Cretaceous superplume. Geology, 26, 151–154.

Tejada, M.L.G., Mahoney, J.J., Neal, C.R., Duncan, R.A., Petterson, M.G., 2002. Basement Geochemistry and Geochronology of Central Malaita, Solomon Islands, with Implications for the Origin and Evolution of the Ontong Java Plateau. Journal of Petrology, 43, 449–484.

Tejada, M.L.G., Suzuki, K., Kuroda, J., Coccioni, R., Mahoney, J.J., Ohkouchi, N., Sakamoto, T., Tatsumi, Y., 2009. Ontong Java Plateau eruption as a trigger for the early Aptian oceanic anoxic event. Geology, 37, 855–858.

Tominaga, K., Ueno, K., Hisada, K., 2019. Anthracoporella–Palaeoaplysina mound in Upper Carboniferous mid-Panthalassan atoll-type carbonates in a Jurassic accretionary complex, central Japan. Facies, 65, 11.

Tsutsumi, Y., Miyashita, A., Terada, K., Hidaka, H., 2009. SHRIMP U-Pb dating of detrital zircons from the Sanbagawa Belt, Kanto Mountains, Japan: need to revise the framework of the belt. Journal of Mineralogical and Petrological Sciences, 104, 12–24.

Vachard, D., Kabanov, P., 2007. Palaeoaplysinella gen. nov. and Likinia Ivanova and Ilkhovskii, 1973 emend., from the type Moscovian (Russia) and the algal affinities of the ancestral palaeoaplysinaceae n. comb. Geobios, 40, 849–860.

Vennin, E., Vachard, D., Proust, J., 1997. Taphonomie et synécologiedu “genre” Tubiphytes dans les bioconstructions de Tratau et de Nizhni-Irginsk (Permien inférieur de l'Oural, Russie). Geobios, 30, 635–649.

Wahlman, G.P. 2002. Upper Carboniferous-lower Permian (Bashkirian-Kungurian) mounds and reefs. Kiessling,W., Flügel,E., Golonka,J. (Eds.), Phanerozoic reef patterns, SEPM Special Publication, 72. 271–338.

Wakita, K., Metcalfe, I., 2005. Ocean Plate Stratigraphy in East and Southeast Asia. Journal of Asian Earth Sciences, 24, 679–702.

Watanabe, K., 1991. Fusuline biostratigraphy of the Upper Carboniferous and Lower Permian of Japan, with special reference to the Carboniferous–Permian boundary. Palaeontological Society of Japan Special Papers, 32.

WiedenbeckI, M., Allé P., Corfu, F., Griffin, W., Meier, M., Oberli, F., Von Quadt.A., Roddick, J., Spiegel, W., 1995. Three Natural Zircon Standards for U-Th-Pb, Lu-Hf, Trace Element and Ree Analyses. Geostandards Newsletter, 19, 1–23.

Wiedenbeck, M., Hanchar, J.M., Peck, W.H., Sylvester, P., Valley, J., Whitehouse, M., Kronz, A., Morishita, Y., Nasdala, L., Fiebig, J., Franchi, I., Girard, J.-., Greenwood, R.C., Hinton, R., Kita, N., Mason, P.R.D., Norman, M., Ogasawara, M., Piccoli, P.M., Rhede, D., Satoh, H., Schulz-Dobrick, B., Skår, O., Spicuzza, M., Terada, K., Tindle, A., Togashi, S., Vennemann, T., Xie, Q., Zheng, Y.-., 2004. Further Characterisation of the 91500 Zircon Crystal. Geostandards and Geoanalytical Research, 28, 9–39.

Wu, J.T., Wu, J., 2019. Izanagi-Pacific ridge subduction revealed by a 56 to 46 Ma magmatic gap along the northeast Asian margin. Geology.

Xia, L., Li, X., 2019. Basalt geochemistry as a diagnostic indicator of tectonic setting. Gondwana Research, 65, 43–67.

Yasukawa, K., Liu, H., Fujinaga, K., Machida, S., Haraguchi, S., Ishii, T., Nakamura, K., Kato, Y., 2014. Geochemistry and mineralogy of REY-rich mud in the eastern Indian Ocean. Journal of Asian Earth Sciences, 93, 25–36.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る