リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「ヘマタイトメソ結晶光アノードの開発に関する研究」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

ヘマタイトメソ結晶光アノードの開発に関する研究

Zhang, Zhujun 神戸大学

2020.03.25

概要

Photoelectrochemical (PEC) water splitting offers an attractive path to efficiently convert solar energy to clean and renewable energy sources such as hydrogen gas. The development of efficient, economically viable and longtime recyclable semiconductors for PEC water oxidation is still one of the main issues that hinder the practical application. Hematite (α-Fe203) is a promising candidate semiconductor for photoanode owing to its suitable bandgap (-2.1 eV) for sunlight absorption, low cost, and long-term stability in alkaline aqueous solution. During the past decade, great attention has been devoted to develop efficient hematite photoanodes, achieving a large photocurrent with a sufficient cathodic onset potential, however, remains big challenging. One limiting PEC performance of hematite is the short minority carrier lifetime (picosecond time scale) and diffusion length (ID) (2-4 nm), which lead to significant recombination in the bulk or at the surface. The nanostructuring of semiconductor is the predominant route employed to suppress such recombination by shortening the carrier difiusion length required for water splitting. While this approach has resulted effective performance enhancements in nanostructured thin films, it does not address the fundamental issue of conflict between charge separation (short diffusion length) and light harvesting. In addition, the sluggish kinetics for the multi-hole catalysis of water oxidation is recognized as an another main problem that hinders the PEC performance improvement of hematite-based photoanodes. As revealed by transient absorption, operando- spectroelectrochemistry, and density functional theory (DFT) studies, hematite follows a first order reaction at low accumulated surface hole density, but can realize a third order reaction kinetics when the surface hole density is sufficient enough to oxidize the nearest neighbor metal atoms to form the Fe(OH)-O-Fe(OH) sites which can equilibrate with three surface holes. Inspired from these theory, an increase of the surface hole density by improving the hole collection efficiency would be a possible path towards an enhanced surface water oxidation kinetics.

Metal oxide mesocrystals (MCs) are superstructures constructed by highly ordered nanoparticle subunits with tunable optical, electronic, and magnetic properties, and show great prospects in applications ranging from catalysis to optoelectronics. Contributed by the highly ordered structures with intimated interfaces between the attached nanocrystals inside the MC particle, the crystal to crystal charge transfer efficiency is much higher than the system of the randomly aggregated nanocrystals. The atomic reconstruction at the interfaces between the attached nanoparticles, such as formation of interfacial oxygen vacancy (Vo), was rarely reported before. Unlike Vo at the surface, which might play as recombination sites, the interfacial Vo located at the bulk of hematite would act as donor centers and thus significantly improve the bulk carrier density. The engineering of the location and concentration of Vo, therefore, would greatly affect the PEC behavior of hematite. To the best of our knowledge, very limited attentions have been paid to modify the PEC performance of metal oxide semiconductors by engineering the location and concentration of Vo. The development of the synthesis routes to control the location and concentration of Vo in hematite is thus very important to understand the Vo-correlated charge transfer dynamics.

In this dissertation, the basic knowledge of PEC water splitting by using hematite as the photoanode semiconductor is introduced in Chapter 1,mainly focused on the problems that limit its practical performance. And the possible paths to improve the PEC performance of hematite-based photoanodes is proposed based on highly ordered hematite mesocrystal-based hieratical structures with abundant interfacial Vo to suppress the significant recombination. Then, the properties of MC superstructures and role of interfacial Vo in hematite are carefully discussed. Finally, the goal of this study is summarized. In Chapter 2, the main characteristic technologies and theory utilized in this dissertation are presented, including the PEC water splitting cells, scanning transmission electron microscopy-electron energy-loss spectroscopy, electrochemical impedance spectroscopy, and time-resolved fluorescence microscopy.

In Chapter 3,1 present a simple additive-free solvothermal method for the synthesis of hematite MCs. The MC-photoanodes with controlled film thickness were fabricated via a multiple spin-coating technique. High temperature (700 °C) annealing treatment can not only activate the hematite MCs and strengthen the attachments between fluorine doped tin oxide (FTO) and hematite, but also play a significant role in modifying the local structures and charge transfer properties. I prove here that a novel thick Ti-modified hematite MC films (〜1500 nm) can realize the unprecedented highly efficient PEC water oxidation under back illumination. During the high temperature annealing process, abundant interfacial Vo can be created due to the partial fusion of interface between the highly ordered nanocrystals within the MC. As a result, significantly increased carrier density was realized in MC-based photoanode for efficient charge separation and transfer. In addition, the high temperature annealing also induces the formation of unique inner mesoporous inside the MC, and forms an extremely high proportion of depletion region and short depletion width at the hematite/electrolyte interfaces, and thus would greatly improve the charge separation and collection efficiencies. Moreover, time-resolved photoluminescence (PL) measurements showed that longer-lived holes can be generated by excitation with shorter wavelength light to drive a considerable number of delocalized holes (〜14%) to the distance far away from the excited regions (900 nm) to the unexcited region (1500 nm) along the intimately connected MCs. The study presented in Chapter 3 indicates that the interfacial Vo in the bulk of hematite plays a significant role in determining the carrier density, bulk conductivity, as well as the charge transfer dynamics. Inspired by this discovery, I further propose that the engineering the concentration of interfacial Vo in the bulk of hematite would be an effective way to improve the PEC performance of hematite-based photoanodes. As I found that the interfacial V。would be created by sintering the interface between the attached highly ordered nanocrystal subunits inside the MC particle, the concentration and distribution of Vo, therefore, would be engineered by modifying the morphology and size of the MC structures. Considering that, the MCs assembled with smaller nanocrystal subunits would provide more interfaces than that of the one assembled with larger nanocrystal subunits, and thus might be utilized to create a higher concentration of interfacial Vo and achieve higher photocurrent. For this purpose, I canied out the study presented in Chapter 4.

In Chapter 4, I have successfully synthesized FeiO3(Ti) MCs assembled with tiny nanoparticle subunits (〜5 nm) via a surfactant-free solvothermal method. I demonstrate that decreasing the sizes of nanoparticles inside MC is an effective route towards increasing the concentration of bulk Vo. Exceedingly high carrier density (Mi) of 4.1 χ 1021 cm-3 was created due to the formation of a high concentration of interfacial Vo in the bulk, thus resulting in the ultra-high bulk conductivity. The high carrier density contributes to the formation of a large proportion of ultra-narrow depletion layer (く1 nm) in both the outer surface and inner pore surfaces of MC particle, which effectively improves the hole collection efficiency by decreasing the hole migration distance and increasing the hole collection pathways. The superior charge transfer efficiency realized by the higher concentration of interfacial V。was further proved by temperature-dependent PEC measurements, which indicates an ultra-low activation energy for water oxidation; and photoconductive atomic force microscope (AFM) observation the PEC behavior of single particles, which suggest the high concentration of interfacial Vo for a superior electron transfer with Ohmic contact. As a result, the optimized photoanode exhibited the highest photocurrent density (4.3 mA cm-2 at 1.23 V vs. RHE) and long-time durability (over 100 h) for hematite-based photoanodes under back illumination.

In this dissertation, I have proved that the highly ordered and closely packed hematite MC hierarchical structures can promote the charge separation and long range charge transfer, which might also work for other (photo)catalysis processes or solar energy conversion systems. Therefore, the concept of hieratical assembly of highly ordered and closely packed semiconductor MCs might further promote their solar to energy conversion efficiency in the future. In addition, I proved that the high temperature annealing in air condition can successfully create interfacial Vo in the bulk of hematite MCs, which can significantly improve the conductivity of hematite. Based on this finding, I rationally controlled the concentration and location of Vo by adjusting the size and shape of MC structures according to the results presented in Chapter 3 and 4. Finally, I found that element diffusion occurred in Ti-modified hematite MCs synthesized by different methods (as presented in Chapter 3 and 4) after the high temperature annealing. Despite the detailed mechanism of charge carrier dynamics are still not clear, the methodology presented here can help us to fabricate core-shell single-crystalline MC superstructure with proper properties in other applications.

Several problems are still remained to be solved in the future. First of all, the details of charge transfer dynamics related to the interfacial Vo are still not clear. Despite I have obtained time-resolved PL data of single aggregated particle under the microscope. However, I cannot fully explain new emission band observed for the MCs that is highly correlated to the Vo. More works including theoretical calculations might help to understand the mechanism of charge transfer dynamics. Second, although significant enhancement of photocurrent was realized by the hematite MC-based photoanodes, their onset potentials for water oxidation however are still high, due to the inevitable recombination at the surface by the surface states. To solve this problem, surface treatment or active co-catalyst might help to improve the hole transfer from the surface of hematite to electrolyte and thus further lower the onset potentials and increase the photocurrent. The third is the lack of effective way to detect the concentration of Vo in the bulk of hematite. It is still hard for us to quantitatively measure the concentration of interfacial Vo, which might play a significant role in enhancement of the carrier density and charge mobility. Finally, it is still not known how the Ti ions segregated from the bulk to the surface and edge of the pores during the high temperature annealing. In situ atomic resolution scanning transmission electron microscope measurements might help us to monitor the evolution of local structures during the high temperature annealing.

この論文で使われている画像

参考文献

[1] Shen, S.; Lindley, S. A.; Chen, X.; Zhang, J. Z. Hematite heterostructures for photoelectrochemical water splitting: Rational materials design and charge carrier dynamics. Energy Environ. Sci. 2016, 9, 2744‒2755.

[2] Chen, X.; Shen, S.; Guo, L.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503‒6570.

[3] Teets, T. S.; Nocera, D. G. Photocatalytic hydrogen production. Chem. Commun. 2011, 47, 9286‒9274.

[4] Han, Z.; Eisenberg, R. Fuel from water: The photochemical generation of hydrogen from water. Acc. Chem. Res. 2014, 47, 2537‒2544.

[5] Mao, S. S.; Shen, S. Catalysing artificial photosynthesis. Nat. Photonics 2013, 7, 944‒946.

[6] Tachibana, Y.; Vayssieres, L.; Durrant, J. R. Artificial photosynthesis for solar water- splitting. Nature Photonics 2012, 6, 511‒518.

[7] Barber, J. Photosynthetic energy conversion: Nature and artificial. Chem. Soc. Rev. 2009, 38, 185‒196.

[8] Blankenship, R. E. et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 2011, 332, 805‒809.

[9] Umena, Y.; Kawakami, K.; Shen, J.-R.; Kamiya, N. Crystal structure of oxygen- evolving Photosystem II at a resolution of 1.9 Å. Nature 2011, 473, 55‒60.

[10] Barber, J. Crystal structure of the oxygen-evolving complex of photosynthesis II. Inorg. Chem. 2008, 47, 1700‒1710.

[11] Kronawitter, C. X. et al. A perspective on solar-driven water splitting with all-oxide hetero-nanostructures. Energ. Environ. Sci. 2011, 4, 3889–3899.

[12] Maeda, K; Domen, K. Photocatalytic water splitting: Recent progress and future challenges. J. Phys. Chem. Lett. 2010, 1, 2655–2661.

[13] Tachibana, Y.; Umekita, K.; Otsuka, Y.; Kuwabata, S. Charge recombination kinetics at an in-situ chemical bath-deposited CdS/Nanocrystalline TiO2 Interface. J. Phys. Chem. C 2009, 113, 6852–6858.

[14] Wasielewski, M. R. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems. Acc. Chem. Res. 2009, 42, 1910–1921.

[15] Yin, Q. et al. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 2010, 328, 342–345.

[16] Kanan, M. W.; Nocera, D. G. In-situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072–1075.

[17] Lewis, N. S.; Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 2006, 103, 15729–15735.

[18] Sivasankar, N., Weare, W. W. & Frei, H. Direct observation of a hydroperoxide surface intermediate upon visible light-driven water oxidation at an Ir oxide nanocluster catalyst by rapid-scan FT-IR spectroscopy. J. Am. Chem. Soc. 2011, 133, 12976–12979.

[19] Nocera, D. G. The artificial leaf. Acc. Chem. Res. 2012, 45, 767–776.

[20] Hernandez-Alonso, M. D.; Fresno, F.; Suarez, S.; Coronado, J. M. Development of alternative photocatalysts to TiO2: Challenges and opportunities. Energy Environ. Sci. 2009, 2, 1231–1257.

[21] Maeda, K.; Domen, K. Photocatalytic water splitting: recent progress and future challenges. J. Phys. Chem. Lett. 2010, 1, 2655–2661.

[22] Esswein, A. J.; Nocera, D. G. Hydrogen production by molecular photocatalysis. Chem. Rev. 2007, 107, 4022–4047.

[23] Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature, 1972, 238, 37‒38.

[24] Li, Z.; Luo, W.; Zhang, M.; Feng, J.; Zou, Z. Photoelectrochemical cells for solar hydrogen production: Current state of promising photoelectrodes, methods to improve their properties, and outlook. Energy Environ. Sci. 2013, 6, 347‒370.

[25] Sun, K.; Shen, S.; Liang, Y.; Burrows, P. E.; Mao, S. S.; Wang, D. Enabling silicon for solar-fuel production. Chem. Rev. 2014, 114, 8662‒8719.

[26] Sartorel, A.; Bonchio, M.; Campagna, S.; Scandola, F. Tetrametallic Molecular Catalysts for Photochemical Water Oxidation. Chem. Soc. Rev. 2013, 42, 2262‒2280.

[27] Xie, G.; Zhang, K.; Guo, B.; Liu, Q.; Fang, L.; Gong, J. R. Graphene-based materials for hydrogen generation from light-driven water splitting. Adv. Mater. 2013, 25, 3820‒3839.

[28] Cornell, R. M.; Schwertmann, U. The iron oxides: structure, properties, reactions, occurrences, and uses, 2nd Ed., Wiley-VCH, Weinheim, 2003.

[29] Lewis, N. S. Research opportunities to advance solar energy utilization. Science 2016, 351, 353‒361.

[30] Murphy, A.B.; Barnes, P.R.F.; Randeniya, L.K.; Plumb, I.C.; Grey, I.E.; Horne, M.D.; Glasscock, J.A. Efficiency of solar water splitting using semiconductor electrodes. Int. J. Hydrogen Energy 2006, 31, 1999‒2017.

[31] Prévot, M. S.; Sivula, K. Photoelectrochemical tandem cells for solar water splitting. J. Phys. Chem. C 2013, 177, 17879‒17893.

[32] Sivula; K., Formal, F. L.; & Grätzel, M. Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 2011, 4, 432–449.

[33] Kennedy J. H.; Frese Jr. K. W. Photooxidation of Water at α-Fe2O3 Electrodes. J. Electrochem. Soc. 1978, 125, 709–714.

[34] Shen. S. Toward efficient solar water splitting over hematite photoelectrodes. J. Mater. Res. 2014, 29, 29–46.

[35] Katz, M. J.; Riha, S. C.; Jeong, N. C.; Martinson, A. B.; Farha, O. K.; Hupp, J. T. Toward solar fuels: Water splitting with sunlight and “Rust”? Coord. Chem. Rev. 2012, 256, 2521–2529.

[36] Hamann, T. W. Splitting water with rust: Hematite photoelectrochemistry. Dalton Trans. 2012, 41, 7830–7834.

[37] Wheeler, D. A.; Wang, G.; Ling Y.; Zhang, J. Z. Nanostructured hematite: Synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties. Energy Environ. Sci. 2012, 5, 6682–6702.

[38] Zboril, R.; Mashlan, M.; Petridis, D. Iron(III) Oxides from thermal processes synthesis, structural and magnetic properties, Mössbauer spectroscopy characterization, and applications. Chem. Mater. 2002, 14, 969–982.

[39] Fitzmorris, B. C. et al. Ultrafast transient absorption studies of hematite nanoparticles: The effect of particle shape on excitation dynamics. ChemSusChem 2013, 6, 1907–1914.

[40] Joly, A. G. et al. Carrier dynamics in α-Fe2O3 (0001) thin films and single crystals probed by femtosecond transient absorption and reflectivity. J. Appl. Phys. 2006, 99, 053521.

[41] Wang, L. et al. Dual effects of nanostructuring and oxygen vacancy on photoelectrochemical water oxidation activity of superstructured and defective hematite nanorods. Small 2018, 14, 1704464.

[42] Kment, S. et al. Photoanodes based on TiO2 and α-Fe2O3 for solar water splitting– superior role of 1D nanoarchitectures and of combined heterostructures. Chem. Soc. Rev. 2017, 46, 3716–3769.

[43] Tilley, S. D.; Cornuz, M.; Sivula, K.; & Grätzel, M. Light-induced water splitting with hematite: Improved nanostructure and iridium oxide catalysts. Angew. Chem. Int. Ed. 2010, 49, 6405–6408.

[44] Dotan, et al. Resonant light trapping in ultrathin films for water splitting. Nat. Mater. 2013, 12, 158–164.

[45] Warren, S. C. et al. Identifying champion nanostructures for solar water-splitting. Nat. Mater. 2013, 12, 842–849.

[46] Guo, X., Wang, L., & Tan, Y. Hematite nanorods Co-doped with Ru cations with different valance states as high performance photoanodes for water splitting. Nano Energy 2015, 16, 320–328.

[47] Jeon, T. H., Moon, G., Park, H., & Choi, W. Ultra-efficient and durable photoelectrochemical water oxidation using elaborately designed hematite nanorod arrays. Nano Energy 2017, 39, 211–218.

[48] Leygraf, C.; Hendewerk, M.; Somorjai, G. The preparation and selected properties of Mg-doped p-type iron oxide as a photocathode for the photoelectrolysis of water using visible light. J. Solid State Chem. 1983, 48, 357–367.

[49] Cesar, I.; Sivula, K.; Kay, A.; Zboril, R.; Graetzel, M. Influence of feature size, film thickness, and silicon doping on the performance of nanostructured hematite photoanodes for solar water splitting. J. Phys. Chem. C 2009, 113, 772–782.

[50] Duret, A.; Gratzel, M. Visible light-induced water oxidation on mesoscopic α-Fe2O3 films made by ultrasonic spray pyrolysis. J. Phys. Chem. B 2005, 109, 17184–17191. [51]F. Le Formal, N.; Tetreault, M.; Cournuz, T.; Moehl, M.; Gratzel,; Sivula, K. Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Chem. Sci. 2011, 2, 737–743.

[52] Lindgren, T.; Wang, H.; Beermann, N.; Vayssieres, L.; Hagfeldt, A.; Lindquist, S.-E.; Aqueous photoelectrochemistry of hematite nanorod array. Sol. Energy Mater. Sol. Cells 2002, 71, 231–243.

[53] Kanan, M. W.; Nocera, D. G. In situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 2008, 321, 1072–1075.

[54] Kiwi, J.; Gratzel, M. Oxygen evolution from water via redox catalysis. Angew. Chem. Int. Ed. 1978, 17, 860 – 861.

[55] Perego, C.; Millini, R. Porous materials in catalysis: Challenges for mesoporous materials. Chem. Soc. Rev. 2013, 42, 3956–3976.

[56] Crossland, E. J. W.; Noel, N.; Sivaram, V.; Leijtens, T.; Alexander-Webber, Snaith, H. J. Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature 2013, 495, 215–219.

[57] Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 2012, 338, 643–647.

[58] Wagner, T.; Haffer, S.; Weinberger, C.; Klaus, D.; Tiemann, M. Mesoporous materials as gas sensors. Chem. Soc. Rev. 2013, 42, 4036–4053.

[59] Walcarius, A. Mesoporous materials and electrochemistry. Chem. Soc. Rev. 2013, 42, 4098–4140.

[60] Ye, Y.; Jo, C.; Jeong, I.; Lee, J. Functional Mesoporous materials for energy applications: Solar cells, fuel cells, and batteries. Nanoscale 2013, 5, 4584–4605.

[61] Davis, M. E. Ordered porous materials for emerging applications. Nature, 2002, 417, 813–821.

[62] Li, W.; Liu, J.; Zhao, D. Mesoporous materials for energy conversion and storage devices. Nat. Rev. Mater. 2016, 1, 16023.

[63] Li, D.; Zhou, H.; Honma, I. Design and synthesis of self-ordered mesoporous nanocomposite through controlled in-situ crystaliization. Nat. Mater. 2014, 3, 65–72. [64]Kong, M.; Li, Y.; Chen, X.; Tian, T.; Fang, P.; Zheng, F.; Zhao, X. Tuning the relative concentration ratio of bulk defects to surface defects in TiO2 nanocrystals leads to high photocatalytic efficiency. J. Am. Chem. Soc. 2011, 133, 16414–16417.

[65] Lakshminarasimhan, N.; Bae, E.; Choi, W. Enhanced photocatalytic production of H2 on mesoporous TiO2 prepared by template-free method: Role of interparticle charge transfer. J. Phys. Chem. C 2007, 111 (42), 15244–15250.

[66] Bisquert, J.; Mora-Sero, I. Simulation of steady-state characteristics of dye-sensitized solar cells and the interpretation of the diffusion length. J. Phys. Chem. Lett. 2010, 1, 450–456.

[67] Zhou, L.; O’Brien, P. Mesocrystals: A new class of solid materials. Small 2008, 4, 1566–1574.

[68] Colfen, H.; Song, R.-Q. Mesocrystals-ordered nanoparticle superstructures. Adv. Mater. 2010, 22, 1301–1330.

[69] Fang, J.; Ding, B.; Gleiter, H. Mesocrystals: Synthesis in metals and applications. Chem. Soc. Rev. 2011, 40, 5347–5360.

[70] Sun, S.; Gebauer, D.; Colfen, H. Alignment of amorphous iron oxide clusters: A non- classical mechanism for magnetite formation. Angew. Chem. Int. Ed. 2017, 56, 4042– 4046.

[71] Niederberger, M.; Colfen, H. Oriented attachment and mesocrystals: Non-classical crystallization mechanisms based on nanoparticle assembly. Phys. Chem. Chem. Phys. 2006, 8 (28), 3271–3287.

[72] Zhou, L.; Smyth-Boyle, D.; O’Brien, P. A facile synthesis of uniform NH4TiOF3 mesocrystals and their conversion to TiO2 mesocrystals. J. Am. Chem. Soc. 2008, 130 (4), 1309–1320.

[73] Bian, Z.; Zhu, J.; Wen, J.; Cao, F.; Huo, Y. Qiang, X.; Cao, Y.; Shen, M.; Li, H.; Lu, Y. Single-crystal-like titania mesocages. Angew. Chem. Int. Ed. 2011, 50, 1105–1108.

[74] Cai, J.; Ye, J.; Chen, S.; Zhao, X.; Zhang, D.; Chen, S.; Ma, Y.; Jin, S.; Qi, L. Self- cleaning, Broadband and quasi-omnidirectional antireflective structures based on mesocrystalline rutile TiO2 nanorod arrays. Energy Environ. Sci. 2012, 5, 7575–7581.

[75] Bian, Z.; Tachikawa, T.; Majima, T. Superstructure of TiO2 crystalline nanoparticles yields effective conduction pathways for photogenerated charges. J. Phys. Chem. Lett. 2012, 3 (11), 1422–1427.

[76] Liu, Z.; Wen, X. D.; Wu, X. L.; Gao, Y. J.; Chen, H. T.; Zhu, J.; Chu, P. K. Intrinsic dipole-field-driven mesoscale crystallization of core-shell ZnO mesocrystal microspheres. J. Am. Chem. Soc. 2009, 131, 9405–9412.

[77] Huang, F.; Zhang, H.; Banfield, J. F. Two-stage crystal-growth kinetics observed during hydrothermal coarsening of nanocrystalline ZnS. Nano Lett. 2003, 3 (3), 373–378.

[78] Yu, J. H.; Joo, J.; Park, H. M.; Baik, S. I.; Kim, S. C.; Hyeon, T. Synthesis of quantum-sized ZnS nanorods by the oriented attachment mechanism. J. Am. Chem. Soc. 2005, 127 (15), 5662–5670.

[79] Huang, X.; Tang, S.; Yang, J.; Tan, Y.; Zheng, N. Etching growth under surface confinement: An effective strategy to prepare mesocrystalline Pd nanocorolla. J. Am. Chem. Soc. 2011, 133 (40), 15946–15949.

[80] Yamauchi, Y.; Momma, T.; Fuziwara, M.; Nair, S. S. Ohsuna, T.; Terasaki, O.; Osaka, T.; Kuroda, K. Unique microstructure of mesoporous Pt (H1-Pt) prepared via direct physical casting in lyotropic liquid crystalline media. Chem. Mater. 2005, 17 (25) 6342–6348.

[81] Wohlrab, S.; Pinna, N.; Antonietti, M. Colfen, H. Polymer-induced alignment of DL- alanine nanocrystals to crystalline mesostructures. Chem. Eur. J. 2005, 11, 2903– 2913.

[82] Jiang, Y.; Gong, H.; Volkmer, D.; Gower, L.; Colfen, H. Preparation of hierarchical mesocrystalline DL-Lysine·HCl–Poly(acrylic acid) hybrid thin films. Adv. Mater. 2011, 23 (31), 3548–3552.

[83] Li, H.; Guan, M.; Zhu, G.; Yin, G.; Xu, Z. Experimental observation of fullerene crystalline growth from mesocrystal to single crystal. Cryst. Growth Des. 2016, 16, 1306–1310.

[84] Gonçalves, R. H.; Lima, B. H. R; & Leite, E. R. Magnetic colloidal nanocrystals: A facile pathway to prepare mesoporous hematite thin films for photoelectrochemical water splitting. J. Am. Chem. Soc. 2011, 133, 6012–6019.

[85] Wang, C. W. et al. Engineered hematite mesoporous single crystals drive drastic enhancement in solar water splitting. Nano Lett. 2016, 16, 427–433.

[86] Tachikawa, T.; & Majima, T. Metal oxide mesocrystals with tailored structures and properties for energy conversion and storage applications. NPG Asia Materials 2014, 6, e100.

[87] Zhang, P.; Tachikawa, T.; Fujitsuka, M.; & Majima, T. The development of functional mesocrystals for energy harvesting, storage, and conversion. Chem. Eur. J. 2018, 24, 6295–6307.

[88] Bian, Z.; Tachikawa, T.; Zhang, P.; Fujitsuka, M.; & Majima, T. A Nanocomposite superstructure of metal oxides with effective charge transfer interface. Nature Commun. 2014, 5, 3038.

[89] Tachikawa, T.; Zhang, P.; Bian, Z.; & Majima, T. Efficient charge separation and photooxidation on cobalt phosphate-loaded TiO2 mesocrystal superstructures. J. Mater. Chem. A 2014, 2, 3381–3388.

[90] Zhang, P.; Tachikawa, T.; Fujitsuka, M.; & Majima, T. Efficient charge separation on 3D architectures of TiO2 mesocrystals packed with chemicallyexfoliated MoS2 shell in synergetic hydrogen evolution. Chem. Commun. 2015, 51, 7187–7190.

[91] Bian, Z.; Tachikawa, T.; Zhang, P.; Fujitsuka, M.; & Majima, T. Au/TiO2 superstructure-based plasmonic photocatalysts exhibiting efficient charge separation and unprecedented activity. J. Am. Chem. Soc. 2014, 136, 458–465.

[92] Zhang, P.; Tachikawa, T.; Fujitsuka, M.; & Majima, T. In situ fluorine doping of TiO2 superstructures for efficient visible-light driven hydrogen generation. ChemSusChem 2016, 9, 617–623.

[93] Deml, A. M.; Holder, A. M.; O’Hayre, R. P.; Musgrave, C. B.; Stevanovic, V. Intrinsic material properties dictating oxygen vacancy formation energetics in metal oxides. J. Phys. Chem. Lett. 2015, 6 (10), 1948–1953.

[94] Nowotny, M. K.; Sheppard, L. R.; Bak, T.; Nowotny, J. Defect chemistry of titanium dioxide. application of defect engineering in processing of TiO2-based photocatalysts. J. Phys. Chem. C 2008, 112 (14), 5275–5300.

[95] Vasquez, G. C.; Karazhanov, S. Zh.; Maestre, D.; Gremades, A.; Piqueras, J.; Foss, S. E. Oxygen vacancy related distortions in rutile TiO2 nanoparticles: A combined experimental and theoretical study. Phys. Rev. B 2016, 94, 235209.

[96] Lu, X.; Zeng, Y.; Yu, M.; Zhai, T.; Liang, C.; Xie, S.; Balogun, M-S.; Tong, Y. Oxygen-deficient hematite nanorods as high-performance and novel negative electrodes for flexible asymmetric supercapacitors. Adv. Mater. 2014, 26 (19), 3148–3155.

[97] Kim, H.-S.; Cook, J. B.; Lin, H.; Ko, J. S.; Tolbert, S. H.; Ozolins, V.; Dunn, B. Oxygen vacancies enhance pseudocapacitive charge storage properties of MoO3−x. Nature Mater. 2017, 16, 454.

[98] Xu, L.; Jiang, Q.; Xiao, Z.; Li, X.; Huo, J.; Wang, S.; Dai, L. Plasma-engraved Co3O4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction. Angew. Chem. Int. Ed. 2016, 55, 5277–5281.

[99] Wang, G.; Ling, Y.; Li, Y. Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications. Nanoscale, 2012, 4, 6682–6691.

[100] Wang, S.; Chen, P.; Bai, Y.; Yun, J.-H.; Liu, G.; Wang, L. New BiVO4 dual photoanodes with enriched oxygen vacancies for efficient solar-driven water splitting. Adv. Mater. 2018, 30, 1800486.

[101] Wang, S.; Chen, P.; Yun, J.-H.; Hu, Y.; Wang, L. An Electrochemically treated BiVO4 photoanode for efficient photoelectrochemical water splitting. Angew. Chem. Int. Ed. 2017, 56, 8500–8504.

[102] Wang, T.; Zhu, Y.-N.; Gu, Z.; An, X.; Liu, L.; Wu, Y.; Liu, H.; Tang, J.; Qu, J. Multi-electric field modulation for photocatalytic oxygen evolution: Enhanced charge separation by coupling oxygen vacancies with faceted heterostructures. Nano Energy 2018, 51, 764–773.

[103] Gan, J.; Lu, X.; Wu, J.; Xie, S.; Zhai, T.; Yu, M.; Zhang, Z.; Mao, Y.; Wang, S. C. I.; Shen, Y.; Tong, Y. Oxygen vacancies promoting photoelectrochemical performance of In2O3 nanocubes. Sci. Rep. 2013, 3, 1021.

[104] Wang, G.; Ling, Y.; Wang, H.; Yang, X.; Wang, C.; Zhang, J. Z.; Li, Y. Hydrogen- treated WO3 nanoflakes show enhanced photostability. Energy Environ. Sci. 2012, 5, 6180–6187.

[105] Gu, Z.; Zhang, L.; Wen, B.; An, X.; Lan, H.; Liu, L.-M.; Chen, T.; Zhang, J.; Cao, X.; Tang, J.; Liu, H.; Qu, J. Efficient design principle for interfacial charge separation in hydrogen-intercalated nonstoichiometric oxides. Nano Energy 2018, 53, 887–897.

[106] Yang, T.-Y.; Kang, H.-Y.; Sim, U.; Lee, Y.-J.; Lee, J.-H.; Koo, B.; Nam, K.T.; Joo, Y.-C. A New Hematite photoanode doping strategy for solar water splitting: oxygen vacancy generation. Phys. Chem. Chem. Phys. 2013, 15, 2117–2124.

[107] Zhang, P.; Tachikawa, T.; Fujitsuka, M.; & Majima, T. In situ fluorine doping of TiO2 superstructures for efficient visible-light driven hydrogen generation. ChemSusChem 2016, 9, 617–623.

[108] Fu, Z.; Jiang, T.; Zhang, L.; Liu, B.; Wang, D.; Wang, L.; Xie, T. Surface treatment with Al3+ on a Ti-doped α-Fe2O3 nanorod array photoanode for efficient photoelectrochemical water splitting. J. Mater. Chem. A 2014, 2, 13705−13712.

[109] Schrebler, R. S.; Altamirano, H.; Grez, P.; Herrera, F. V.; Muñoz, E. C.; Ballesteros, L. A.; Cordova, R. A.; Go mez, H.; Dalchiele, E. A. The influence of different electrodeposition E/T programs on the photoelectrochemical properties of α-Fe2O3 thin films. Thin Solid Films 2010, 518, 6844−6852.

[110] Wodka, D.; Socha, R. P.; Bielańska, E.; Elzbieciak-Wodka, M.; ̇ Nowak, P.; Warszyński, P. Photocatalytic activity of titanium dioxide modified by Fe2O3 nanoparticles. Appl. Surf. Sci. 2014, 319, 173−180.

[111] Peng, L.; Xie, T.; Fan, Z.; Zhao, Q.; Wang, D.; Zheng, D. Surface photovoltage characterization of an oriented α-Fe2O3 nanorod array. Chem. Phys. Lett. 2008, 459, 159−163.

[112] McDonald, K. J.; Choi, K.-S. Synthesis and photoelectrochemical properties of Fe2O3/ZnFe2O4 composite photoanodes for use in solar water oxidation. Chem. Mater. 2011, 23, 4863−4869.

[113] Steier, L.; Herraiz-Cardona, I.; Gimenez, S.; Fabregat-Santiago, F.; Bisquert, J.; Tilley, S. D.; Gratzel, M. Understanding the role of underlayers and overlayers in thin film hematite photoanodes. Adv. Funct. Mater. 2014, 24, 7681−7688.

[114] Ratcliff, E. L.; Meyer, J.; Steirer, K. X.; Garcia, A.; Berry, J. J.; Ginley, D. S.; Olson, D. C.; Kahn, A.; Armstrong, N. R. Evidence for near-surface NiOOH species in solution-processed niox selective interlayer materials: Impact on energetics and the performance of polymer bulk heterojunction photovoltaics. Chem. Mater. 2011, 23, 4988−5000.

[115] Ling, Y. C.; Wang, G. M.; Wang, H. Y.; Yang, Y.; Li, Y. Low temperature activation of hematite nanowires for photoelectrochemical water oxidation. ChemSusChem 2014, 7, 848−853.

[116] Kronawitter, C. X.; Zegkinoglou, I.; Shen, S. H.; Liao, P.; Cho, I. S.; Zandi, O.; Liu, Y. S.; Lashgari, K.; Westin, G.; Guo, J. H.; Himpsel, F. J.; Carter, E. A.; Zheng, X. L.; Hamann, T. W.; Koel, B. E.; Mao, S. S.; Vayssieres, L. Titanium incorporation into hematite photoelectrodes: Theoretical considerations and experimental observations. Energy Environ. Sci. 2014, 7, 3100−3121.

[117] Wang, Y.; Tang, J.; Zhou, T.; Da, P.; Li, J.; Kong, B.; Yang, Z.; Zheng, G. Reversible chemical tuning of charge carriers for enhanced photoelectrochemical conversion and probing of living cells. Small 2014, 10, 4967−4974.

[118] Wang, Z.; Mao, X.; Chen, P.; Xiao, M.; Monny, S. A.; Wang, S.; Konarova, M.; Du, A.; Wang, L. Understanding the roles of oxygen vacancies in hematite-based photoelectrochemical processes. Angew. Chem. Int. Ed. 2019, 58, 1030−1034.

[119] Zhou, Z.; Liu, J.; Long, R.; Li, L.; Guo, L.; Prezhdo, O. V. Control of charge carriers trapping and relaxation in hematite by oxygen vacancy charge: Ab initio non- adiabatic molecular dynamics. J. Am. Chem. Soc. 2017, 139, 6707−6717.

[120] Zhou, Z.; Huo, P.; Guo, L.; Prezhdo, O. L. Understanding hematite doping with group IV elements: A DFT+U study. J. Phys. Chem. C 2015, 119, 26303−26310.

[121] Wheeler, D. A.; Wang, G.; Ling, Y.; Zhang, J. Z. Nanostructured hematite: synthesis, characterization, charge carrier dynamics, and photoelectrochemical properties. Energy Environ. Sci. 2012, 5, 6682−6702.

[122] Ma, Y.; Johnson, P. D.; Wassdahl, N.; Guo, J.; Skytt, P.; Nordgren, J.; Kevan, S. D.; Rubensson, J. E.; Böske, T.; Eberhardt, W. Electronic structures of alpha -Fe2O3 and Fe3O4 from O K-edge absorption and emission spectroscopy. Phys. Rev. B: Condens. Matter Mater. Phys. 1993, 48, 2109 −2111.

[123] Sorenson, S.; Driscoll, E.; Haghighat, S.; Dawlaty, J. M. Ultrafast carrier dynamics in hematite films: The role of photoexcited electrons in the transient optical response J. Phys. Chem. C 2014, 118, 23621−23626.

[124] Iordanova, N.; Dupuis, M.; Rosso, K. M. Charge transport in metal oxides: A theoretical study of hematite α-Fe2O3. J. Chem. Phys. 2005, 122, 144305.

[125] Liao, P.; Toroker, M. C.; Carter, E. A. Electron transport in pure and doped hematite. Nano Lett. 2011, 11, 1775−1781.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る