リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Adipose tissue insulin resistance exacerbates liver inflammation and fibrosis in a diet-induced NASH model」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Adipose tissue insulin resistance exacerbates liver inflammation and fibrosis in a diet-induced NASH model

Hosokawa, Yusei Hosooka, Tetsuya Imamori, Makoto Yamaguchi, Kanji Itoh, Yoshito Ogawa, Wataru 神戸大学

2023.05.23

概要

Background: Insulin regulates various biological processes in adipocytes, and adipose tissue dysfunction due to insulin resistance in this tissue plays a central role in the development of metabolic diseases, including NAFLD and NASH. However, the combined impact of adipose tissue insulin resistance and dietary factors on the pathogenesis of NAFLD-NASH has remained unknown. Methods and Results: 3′-phosphoinositide–dependent kinase 1 (PDK1) is a serine-threonine protein kinase that mediates the metabolic actions of insulin. We recently showed that adipocyte-specific PDK1 knockout (A-PDK1KO) mice maintained on normal chow exhibit metabolic disorders, including progressive liver disease leading to NASH, in addition to reduced adipose tissue mass. We here show that maintenance of A-PDK1KO mice on the Gubra amylin NASH (GAN) diet rich in saturated fat, cholesterol, and fructose exacerbates inflammation and fibrosis in the liver. Consistent with these histological findings, RNA-sequencing analysis of the liver showed that the expression of genes related to inflammation and fibrosis was additively upregulated by adipocyte-specific PDK1 ablation and the GAN diet. Of note, the reduced adipose tissue mass of A-PDK1KO mice was not affected by the GAN diet. Our results thus indicate that adipose tissue insulin resistance and the GAN diet additively promote inflammation and fibrosis in the liver of mice. Conclusions: A-PDK1KO mice fed with the GAN diet, constitute a new mouse model for studies of the pathogenesis of NAFLD-NASH, especially that in lean individuals, as well as for the development of potential therapeutic strategies for this disease.

この論文で使われている画像

参考文献

1. Younossi ZM. Non-alcoholic fatty liver disease—a global public

health perspective. J Hepatol. 2019;70:531–44.

2. Younossi ZM, Henry L. Epidemiology of non-alcoholic fatty liver

disease and hepatocellular carcinoma. JHEP Rep. 2021;3:

100305.

3. Rohm TV, Meier DT, Olefsky JM, Donath MY. Inflammation in

obesity, diabetes, and related disorders. Immunity. 2022;55:

31–55.

4. Younes R, Bugianesi E. NASH in lean individuals. Semin Liver

Dis. 2019;39:86–95.

5. Younes R, Govaere O, Petta S, Miele L, Tiniakos D, Burt A, et al.

Caucasian lean subjects with non-alcoholic fatty liver disease

share long-term prognosis of non-lean: time for reappraisal of

BMI-driven approach? Gut. 2022;71:382–90.

6. Francque S, Wong VW. NAFLD in lean individuals: not a benign

disease. Gut. 2022;71:234–6.

7. Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M,

et al. Global burden of NAFLD and NASH: trends, predictions,

risk factors and prevention. Nat Rev Gastroenterol Hepatol.

2018;15:11–20.

8. Leung JC, Loong TC, Wei JL, Wong GL, Chan AW, Choi PC,

et al. Histological severity and clinical outcomes of nonalcoholic

fatty liver disease in nonobese patients. Hepatology. 2017;65:

54–64.

9. Azzu V, Vacca M, Virtue S, Allison M, Vidal-Puig A. Adipose

tissue-liver cross talk in the control of whole-body metabolism:

implications in nonalcoholic fatty liver disease. Gastroenterology.

2020;158:1899–912.

10. Feve B. Adipogenesis: cellular and molecular aspects. Best

Pract Res Clin Endocrinol Metab. 2005;19:483–99.

11. Fasshauer M, Paschke R. Regulation of adipocytokines and

insulin resistance. Diabetologia. 2003;46:1594–603.

12. Giorgino F, Laviola L, Eriksson JW. Regional differences of

insulin action in adipose tissue: insights from in vivo and in vitro

studies. Acta Physiol Scand. 2005;183:13–30.

13. Lomonaco R, Ortiz-Lopez C, Orsak B, Webb A, Hardies J,

Darland C, et al. Effect of adipose tissue insulin resistance

on metabolic parameters and liver histology in obese patients

with nonalcoholic fatty liver disease. Hepatology. 2012;55:

1389–97.

14. Rosso C, Kazankov K, Younes R, Esmaili S, Marietti M, Sacco

M, et al. Crosstalk between adipose tissue insulin resistance and

liver macrophages in non-alcoholic fatty liver disease. J Hepatol.

2019;71:1012–21.

15. Pearce LR, Komander D, Alessi DR. The nuts and bolts of AGC

protein kinases. Nat Rev Mol Cell Biol. 2010;11:9–22.

16. Hosooka T, Hosokawa Y, Matsugi K, Shinohara M, Senga Y,

Tamori Y, et al. The PDK1-FoxO1 signaling in adipocytes

controls systemic insulin sensitivity through the 5-lipoxygenaseleukotriene B4 axis. Proc Natl Acad Sci USA. 2020;117:

11674–84.

17. Boland ML, Oro D, Tolbol KS, Thrane ST, Nielsen JC, Cohen TS,

et al. Towards a standard diet-induced and biopsy-confirmed

mouse model of non-alcoholic steatohepatitis: impact of dietary

fat source. World J Gastroenterol. 2019;25:4904–20.

18. Inoue H, Ogawa W, Asakawa A, Okamoto Y, Nishizawa A,

Matsumoto M, et al. Role of hepatic STAT3 in brain-insulin action

on hepatic glucose production. Cell Metab. 2006;3:267–75.

19. Eguchi J, Wang X, Yu S, Kershaw EE, Chiu PC, Dushay J, et al.

Transcriptional control of adipose lipid handling by IRF4. Cell

Metab. 2011;13:249–59.

20. Matsumoto M, Ogawa W, Akimoto K, Inoue H, Miyake K,

Furukawa K, et al. PKClambda in liver mediates insulininduced SREBP-1c expression and determines both hepatic

lipid content and overall insulin sensitivity. J Clin Invest. 2003;

112:935–44.

ADIPOSE TISSUE INSULIN RESISTANCE IN NASH PATHOLOGY

Downloaded from http://journals.lww.com/hepcomm by BhDMf5ePHKav1zEoum1tQfN4a+kJLhEZgbsIHo4XMi0hCywCX

1AWnYQp/IlQrHD3i3D0OdRyi7TvSFl4Cf3VC1y0abggQZXdgGj2MwlZLeI= on 05/26/2023

21. Kleiner DE, Brunt EM, Van Natta M, Behling C, Contos MJ,

Cummings OW, et al. Design and validation of a histological

scoring system for nonalcoholic fatty liver disease. Hepatology.

2005;41:1313–21.

22. Brunt EM, Janney CG, Di Bisceglie AM, Neuschwander-Tetri BA,

Bacon BR. Nonalcoholic steatohepatitis: a proposal for grading

and staging the histological lesions. Am J Gastroenterol. 1999;

94:2467–74.

23. Yamaguchi K, Yang L, McCall S, Huang J, Yu XX, Pandey SK,

et al. Inhibiting triglyceride synthesis improves hepatic steatosis

but exacerbates liver damage and fibrosis in obese mice with

nonalcoholic steatohepatitis. Hepatology. 2007;45:1366–74.

24. Loomba R, Friedman SL, Shulman GI. Mechanisms and disease

consequences of nonalcoholic fatty liver disease. Cell. 2021;184:

2537–64.

25. Gerhard GS, Legendre C, Still CD, Chu X, Petrick A, DiStefano

JK. Transcriptomic profiling of obesity-related nonalcoholic

steatohepatitis reveals a core set of fibrosis-specific genes. J

Endocr Soc. 2018;2:710–26.

26. Pessoa J, Teixeira J. Cytoskeleton alterations in non-alcoholic

fatty liver disease. Metabolism. 2022;128:155115.

27. Suppli MP, Rigbolt KTG, Veidal SS, Heeboll S, Eriksen PL,

Demant M, et al. Hepatic transcriptome signatures in patients

with varying degrees of nonalcoholic fatty liver disease compared with healthy normal-weight individuals. Am J Physiol

Gastrointest Liver Physiol. 2019;316:G462–72.

28. Lehr S, Hartwig S, Sell H. Adipokines: a treasure trove for the

discovery of biomarkers for metabolic disorders. Proteomics Clin

Appl. 2012;6:91–101.

29. Hansen HH, Ægidius HM, Oró D, Evers SS, Heebøll S, Eriksen PL,

et al. Human translatability of the GAN diet-induced obese mouse

model of non-alcoholic steatohepatitis. BMC Gastroenterol. 2020;

20:210.

30. Clapper JR, Hendricks MD, Gu G, Wittmer C, Dolman CS, Herich

J, et al. Diet-induced mouse model of fatty liver disease and

nonalcoholic steatohepatitis reflecting clinical disease progression and methods of assessment. Am J Physiol Gastrointest

Liver Physiol. 2013;305:G483–95.

31. Luukkonen PK, Qadri S, Ahlholm N, Porthan K, Mannisto V,

Sammalkorpi H, et al. Distinct contributions of metabolic

dysfunction and genetic risk factors in the pathogenesis of

non-alcoholic fatty liver disease. J Hepatol. 2022;76:526–35.

32. Nobili V, Marcellini M, Marchesini G, Vanni E, Manco M, Villani A,

et al. Intrauterine growth retardation, insulin resistance, and

nonalcoholic fatty liver disease in children. Diabetes Care. 2007;

30:2638–40.

33. Kotronen A, Juurinen L, Tiikkainen M, Vehkavaara S, YkiJarvinen H. Increased liver fat, impaired insulin clearance, and

hepatic and adipose tissue insulin resistance in type 2 diabetes.

Gastroenterology. 2008;135:122–30.

34. Kotronen A, Seppala-Lindroos A, Bergholm R, Yki-Jarvinen H.

Tissue specificity of insulin resistance in humans: fat in the liver

rather than muscle is associated with features of the metabolic

syndrome. Diabetologia. 2008;51:130–8.

35. Sugimoto D, Tamura Y, Takeno K, Kaga H, Someya Y, Kakehi S,

et al. Clinical features of nonobese, apparently healthy,

Japanese men with reduced adipose tissue insulin sensitivity.

J Clin Endocrinol Metab. 2019;104:2325–33.

36. Eslam M, Newsome PN, Sarin SK, Anstee QM, Targher G,

Romero-Gomez M, et al. A new definition for metabolic

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

11

dysfunction-associated fatty liver disease: An international expert

consensus statement. J Hepatol. 2020;73:202–9.

Nalluri SM, O’Connor JW, Gomez EW. Cytoskeletal signaling in

TGFbeta-induced epithelial-mesenchymal transition. Cytoskeleton (Hoboken). 2015;72:557–69.

Sandbo N, Dulin N. Actin cytoskeleton in myofibroblast differentiation: ultrastructure defining form and driving function. Transl

Res. 2011;158:181–96.

Marra F, Bertolani C. Adipokines in liver diseases. Hepatology.

2009;50:957–69.

Polyzos SA, Kountouras J, Zavos C. Nonalcoholic fatty liver

disease: the pathogenetic roles of insulin resistance and

adipocytokines. Curr Mol Med. 2009;9:299–314.

Heydari M, Cornide-Petronio ME, Jimenez-Castro MB, Peralta C.

Data on adiponectin from 2010 to 2020: therapeutic target and

prognostic factor for liver diseases? Int J Mol Sci 2020;21:5242.

Jimenez-Cortegana C, Garcia-Galey A, Tami M, Del Pino P,

Carmona I, Lopez S, et al. Role of leptin in non-alcoholic fatty

liver disease. Biomedicines. 2021;9:762.

Francisco V, Sanz MJ, Real JT, Marques P, Capuozzo M, Ait

Eldjoudi D, et al. Adipokines in non-alcoholic fatty liver disease:

are we on the road toward new biomarkers and therapeutic

targets? Biology (Basel). 2022;11:1237.

Mirea AM, Toonen EJM, van den Munckhof I, Munsterman ID,

Tjwa E, Jaeger M, et al. Increased proteinase 3 and neutrophil

elastase plasma concentrations are associated with nonalcoholic fatty liver disease (NAFLD) and type 2 diabetes. Mol

Med. 2019;25:16.

Hou W, Janech MG, Sobolesky PM, Bland AM, Samsuddin S,

Alazawi W, et al. Proteomic screening of plasma identifies

potential noninvasive biomarkers associated with significant/advanced fibrosis in patients with nonalcoholic fatty liver

disease. Biosci Rep. 2020;40:BSR20190395.

Tada T, Saibara T, Ono M, Takahashi H, Eguchi Y, Hyogo H,

et al. Predictive value of cytokeratin-18 fragment levels for

diagnosing steatohepatitis in patients with nonalcoholic fatty liver

disease. Eur J Gastroenterol Hepatol. 2021;33:1451–8.

Baboota RK, Rawshani A, Bonnet L, Li X, Yang H, Mardinoglu A,

et al. BMP4 and Gremlin 1 regulate hepatic cell senescence

during clinical progression of NAFLD/NASH. Nat Metab. 2022;4:

1007–21.

Yu M, He X, Song X, Gao J, Pan J, Zhou T, et al. Biglycan

promotes hepatic fibrosis through activating heat shock protein

47. Liver Int. 2023;43:500–12.

Li J, Wang Y, Ma M, Jiang S, Zhang X, Zhang Y, et al. Autocrine

CTHRC1 activates hepatic stellate cells and promotes liver fibrosis

by activating TGF-beta signaling. EBioMedicine. 2019;40:43–55.

Cui X, Zhang X, Yin Q, Meng A, Su S, Jing X, et al. F‑actin

cytoskeleton reorganization is associated with hepatic stellate

cell activation. Mol Med Rep. 2014;9:1641–7.

How to cite this article: Hosokawa Y, Hosooka

T, Imamori M, Yamaguchi K, Itoh Y, Ogawa W.

Adipose tissue insulin resistance exacerbates

liver inflammation and fibrosis in a diet-induced

NASH model. Hepatol Commun. 2023;7:e0161.

https://doi.org/10.1097/HC9.0000000000000161

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る