リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Transport Characteristics in GaAs/AlGaAs Quantum Structures」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Transport Characteristics in GaAs/AlGaAs Quantum Structures

Takahashi Motoi 東北大学

2020.03.25

概要

The role of semiconductor becomes more important in modern society. Especially, GaAs/AlGaAs has played important role in semiconductor spintronics. GaAs/AlGaAs heterojunction forms 2 dimensional systems, for electron or hole, which show quantum transport characteristics at very low temperature. I utilized the devices made from GaAs/AlGaAs, which are so-called quantum point contact (QPC) and quantum dots (QD). I fabricated and measured the QPC device with electron system, and I measured the QD device with hole system.

We estimate the potential shape of the one-dimensional channel based on Landauer- Büttiker model to clarify the characteristics of triple-gated quantum point contact (QPC) which is expected to suppress disorder effect compared with the conventional QPCs. We also find the important role of disorder; however, the one-dimensional channel seems to be longer for the device with longer fabricated length and increases with the center gate bias in case of the triple-gate QPC, suggesting important role of the center gate.

We utilize electric dipole spin resonance (EDSR) to demonstrate electrical tunability of the hole g-factor in a gated GaAs double-dot device. This tunability is a consequence of the strong spin-orbit interaction (SOI) in the GaAs valence band. EDSR is used to demonstrate that the gap separating the two lowest energy states changes its character from a charge-like to a spin-like excitation as a function of interdot detuning or magnetic field. In the spin-like regime, the gap can be characterized by the effective g-factor, which differs from the bulk value owing to spin-charge hybridization, and can be tuned smoothly and sensitively by gate voltages and the magnetic field.

この論文で使われている画像

参考文献

[1] D. Kahng and S. M. Sze. A Floating Gate and Its Application to Memory Devices. Bell Syst. Tech. J., 46:1283, (1967).

[2] Gordon E. Moore. Cramming more components onto integrated circuits. IEEE, 38(8):114, (1965).

[3] M. W. Johnson, M. H. S. Amin, S. Gildert, T. Lanting, F. Hamze, N. Dickson, R. Harris, A. J. Berkley, J. Johansson, P. Bunyk, E. M. Chapple, C. Enderud, J. P. Hilton, K. Karimi, E. Ladizinsky, N. Ladizinsky, T. Oh, I. Perminov, C. Rich, M. C. Thom, E. Tolkacheva, C. J. S. Truncik, S. Uchaikin, J. Wang, B. Wilson, and G. Rose. Quantum annealing with manufactured spins. Nature, 473:194, (2011).

[4] F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends, R. Biswas, S. Boixo, F. G. S. L. Brandao, D. A. Buell, B. Burkett, Y. Chen, Z. Chen, B. Chiaro, R. Collins, W. Courtney, A. Dunsworth, E. Farhi, B. Foxen, A. Fowler, C. Gidney, M. Giustina, R. Graff, K. Guerin, S. Habegger, M. P. Harrigan, M. J. Hartmann, A. Ho, M. Hoffmann, T. Huang, T. S. Humble, S. V. Isakov, E. Jeffrey, Z. Jiang, D. Kafri, K. Kechedzhi, J. Kelly, P. V. Klimov, S. Knysh, A. Korotkov, F. Kostritsa, D. Landhuis, M. Lindmark, E. Lucero, D. Lyakh ans S. Mandra`, J. R. McClean, M. McEwen, A. Megrant, X. Mi, K. Michielsen, M. Mohseni, J. Mutus, O. Naaman, M. Neeley, C. Neill, M. Y. Niu, E. Ostby, A. Petukhov, J. C. Platt, C. Quintana, E. G. Rieffel, P. Roushan, N. C. Rubin, D. Sank, K. J. Satzinger, V. Smelyanskiy, K. J. Sung, M. D. Trevithick, A. Vainsencher, B. Villalonga, T. White, Z. J. Yao, P. Yeh, A. Zalcman, H. Neven, and J. M. Marti- nis. Quantum supremacy using a programmable superconducting processor. Nature, 574:505, (2019).

[5] Y. Nakamura, Yu. A. Pashkin, and J. S. Tsai. Coherent control of macroscopic quantum states in a single-Cooper-pair box. Nature, 398:786, (1999).

[6] I. Hen and A. P. Young. Solving the graph-isomorphism problem with a quantum annealer. Phys. Rev. A, 86:042310, (2012).

[7] K. C. Nowack, F. H. L. Koppens, Yu. V. Nazarov, and L. M. K. Vandersypen. Coherent Control of a Single Electron Spin with Electric Fields. Science, 318:1430, (2007).

[8] A. Noiri, T. Nakajima, J. Yoneda, M. R. Delbecq, P. Stano, T. Otsuka, K. Takeda, S. Amaha, G. Allison, K. Kawasaki, Y. Kojima, A. Ludwig, A. D. Wieck, D. Loss, and S. Tarucha. A fast quantum interface between different spin qubit encodings. Nat. Commun., 9:5066, (2018).

[9] A. J. Landig, J. V. Koski, P. Scarlino, U. C. Mendes, A. Blais, C. Reichl, W. Wegscheider, A. Wallraff, K. Ensslin, and T. Ihn. Coherent spin-photon coupling using a resonant exchange qubit. Nature, 560:179–184, (2018).

[10] A. M. Tyryshkin, S. Tojo, J. J. L. Morton, H. Riemann, N. V. Abrosimov, P. Becker, H.-J. Pohl, T. Schenkel, M. L .W. Thewalt, K. M. Itoh, and S. A. Lyon. Electron spin coherence exceeding seconds in high-purity silicon. Nat. Mater., 11:143, (2012).

[11] D. M. Zajac, A. J. Sigillito, M. Russ, F. Borjans, J. M. Taylor, G. Burkard, and J. R. Petta. Resonantly driven CNOT gate for electron spins. Science, 359:439–442, (2018).

[12] Takeji Takui, Lawrence Berliner, and Graeme Hanson. Electron Spin Resonance (ESR) Based Quantum Computing. Springer, 2016.

[13] D. G. Cory, A. F. Fahmy, and T. F. Havel. Ensemble quantum computing by NMR spectroscopy. Proc. Natl. Acad. Sci., 94:1634–1639, (1997).

[14] T. Otsuka, T. Nakajima, M. R. Delbecq, S. Amaha, J. Yoneda, K. Takeda, G. Allison, T. Ito, R. Sugawara, A. Noiri, A. Ludwig, A. D. Wieck, and S. Tarucha. Single-electron Spin Resonance in a Quadruple Quantum Dot. Sci. Rep., 6:31820, (2016).

[15] N. Kumada, K. Muraki, and Y. Hirayama. NMR Evidence for Spin Canting in a Bilayer ν = 2 Quantum Hall System. Phys. Rev. Lett., 99:076805, (2007).

[16] G. Yusa, K. Muraki, K. Takashina, K. Hashimoto, and Y. Hirayama. Controlled multiple quantum coherence of nuclear spins in a nanometre-scale device. Nature, 434:7036, (2005).

[17] S. A., G. E. Stillman, and C. M. Wolfe. Thins solid films. Elsevier Sequoia, (1976).

[18] W. Walukiewicz, H. E. Ruda, J. Lagowski, and H. C. Gatos. Electron mobility in modulation-doped heterostructures. Phys. Rev. B, 30:4571, (1984).

[19] T. Miura, S. Hiyamizu, T. Fujii, and K. Nanbu. A New Field-Effect Transistor with Selectively Doped GaAs/n-AlxGa1 xAs Heterojunctions. Jpn. J. Appl. Phys., 19:5, (1980).

[20] I. Schnitzer, E. Yablonovitch, C. Caneau, and T. J. Gmitter. Ultrahigh sponta- neous emission quantum efficiency, 99.7% internally and 72% externally, from Al- GaAs/GaAs/AlGaAs double heterostructures. Appl. Phys. Lett., 62:131, (1993).

[21] K. Fricke. Piezoelectric properties of GaAs for application in stress transducers. J. Appl. Phys., 70:914, (1991).

[22] Band structure and carrier concentration of Gallium Arsenide Antimonide (GaAsSb). NSM Archive, page http://www.ioffe.ru/SVA/NSM/Semicond/GaAsSb/bandstr.html, (2001).

[23] W. T. Sommer. Liquid Helium as a Barrier to Electrons. Phys. Rev. Lett., 12:271, (1964).

[24] A. Y. Cho and J. R. Arthur. Molecular beam epitaxy. Prog. Solid State Chem., 10:3, (1975).

[25] Aluminium Gallium Arsenide (AlGaAs) - Band structure and carrier concentration. NSM Archive, page http://www.ioffe.ru/SVA/NSM/Semicond/AlGaAs/bandstr.html, (2002).

[26] Thomas Ihn. Semiconductor Nanostructures -Quantum States and Electronic Transport-. OXFORD university press, 2010.

[27] John H. Davies. The Physics of Low-dimensional Semiconductors -an introduction-. Cambridge University Press, 1998.

[28] B. J. van Wees, H. van Houten, C. W. abeenakker, J. G. Williamson, L. P. Kouwenhoven, D. van der Marel, and C. T. Foxon. Quantized conductance of point contacts in a two- dimensional electron gas. Phys. Rev. Lett., 60:9, (1988).

[29] M. Büttiker. Quantized transmission of a saddle-point constriction. Phys. Rev. B, 41:7906–7909, (1990).

[30] H. van Houten and C. Beenakker. QUANTUM POINT CONTACTS. Physics Today, 49:22, (1996).

[31] J. M. Elzerman, R. Hanson, J. S. Greidanus, L. H. Willems van Beveren, S. De Franceschi, L. M. K. Vandersypen, S. Tarucha, and L. P. Kouwenhoven. Few-electron quantum dot circuit with integrated charge read out. Phys. Rev. B, 67:161308(R), (2003).

[32] K. F. Berggren and I. I. Yakimenko. Effects of exchange and electron correlation on conductance and nanomagnetism in ballistic semiconductor quantum point contacts. Phys. Rev. B, 66:085323, (2002).

[33] K. J. Thomas, J. T. Nicholls, M. Y. Simmons, M. Pepper, D. R. Mace, and D. A. Ritchie. Possible Spin Polarization in a One-Dimensional Electron Gas. Phys. Rev. Lett., 77:1, (1996).

[34] K. J. Thomas, J. T. Nicholls, M. Pepper, W. R. Tribe, M. Y. Simmons, and D. A. Ritchie. Spin properties of low-density one-dimensional wires. Phys. Rev. B, 61:20, (2000).

[35] A. Kristensen, H. Bruus, A. E. Hansen, J. B. Jensen, P. E. Lindelof, C. J. Marckmann, J. Nygård, and C. B. Sørensen. Bias and temperature dependence of the 0.7 conductance anomaly in quantum point contacts. Phys. Rev. B, 62:16, (2000).

[36] F. Bauer, J. Heyder, E. Schubert, D. Borowsky, D. Taubert, B. Bruognolo, D. Schuh, W. Wegscheider, J. von Delft, and S. Ludwig. Microscopic origin of the ’0.7-anomaly’ in quantum point contacts. Nature, 501:73–78, (2013).

[37] M. J. Iqbal, Roi Levy, E. J. Koop, J. B. Dekker, J. P. de Jong, J. H. M. van der Velde, D. Reuter, A. D.Wieck, Ramón Aguado, Yigal Meir, and C. H. van derWal. Odd and even Kondo effects from emergent localization in quantum point contacts. Nature, 501:79–83, (2013).

[38] S. Maeda, S. Miyamoto, M. H. Fauzi, K. Nagase, K. Sato, and Y. hirayama. Fabry-Pe`rot interference in a triple-gated quantum point contact. Appl. Phys. Lett., 109:14, (2016).

[39] M. A. Kastner. Artificial atoms. Physics Today, 46:1, 24, (1993).

[40] R. C. Ashoori. Electrons in artificial atoms. Nature, 379:1, (1996).

[41] S. Tarucha, D. G. Austing, and T. Honda. Shell Filling and Spin Effects in a Few Electron Quantum Dot. Phys. Rev. Lett., 77:17, (1996).

[42] L. P. Kouwenhoven, T. H. Oosterkamp, M. W. S. Danoesastro, M. Eto, D. G. Austing, T. Honda, and S. Tarucha. Excitation Spectra of Circular Few-Electron Quantum Dots. Science, 278:5, (1997).

[43] S. Lindemann, T. Ihn, T. Heinzel, W. Zwerger, and K. Ensslin. Stability of spin states in quantum dots. Phys. Rev. B, 66:195314, (2002).

[44] M. Field, C. G. Smith, M. Pepper, D. A. Ritchie, J. E. F. Frost, G. A. C. Jones, and D. G. Hasko. Measurements of Coulomb Blockade with a Noninvasive Voltage Probe. Phys. Rev. Lett., 70:9, (1993).

[45] R. Hanson, L. P. Kouwenhoven, J. R. Petta, S. Tarucha, and L. M. K .Vandersypen. Spins in few-electron quantum dots. Rev. Mod. Phys., 79:1217, (2007).

[46] I. H. Chan, P. Fallahi, R. M. Westervelt, K. D. Maranowski, and A. C. Gossard. Capacitively coupled quantum dots as a single-electron switch. Physics E, 17:584–588, (2003).

[47] Y. C. Shih, M. Murakami, E. L. Wilkie, and A. C. Callegari. Effects of interfacial microstructure on uniformity and thermal stability of AuNiGe ohmic contact to n-type GaAs. J. Appl. Phys, 62:582, (1987).

[48] E. J. Koop, M. J. Iqbal, F. Limbach, M. Boute, B. J. van Wees, D. Reuter, A. D. Wieck, B. J. Kooi, and C. H. van der Wal. On the annealing mechanism of AuGe/Ni/Au ohmic contacts to a two-dimensional electron gas in GaAs/AlxGa1 xAs heterostructures. Semicond. Sci. Technol., 28:025006, (2013).

[49] A. Valeille, K. Muraki, and Y. Hirayama. Highly reproducible fabrication of back-gated GaAs/AlGaAs heterostructures using AuGeNi ohmic contacts with initial Ni layer. Appl. Phys. Lett., 92:152106, (2008).

[50] A. Kristensen, H. Bruus, A. E. Hansen, J. B. Jensen, P. E. Lindelof, C. J. Marckmann, J. Nygård, C. B. Sørensen, F. Beuscher, A. Forchel, and M. Michel. Bias and tempera- ture dependence of the 0.7 conductance anomaly in quantum point contacts. Phys. Rev. B, 62:16, (2000).

[51] L. W. Smith, H. Al-Taie, A. A. J. Lesage, K. J. Thomas, F. Sfigakis, P. See, J. P. Griffiths, I. Farrer, G. A. C. Jones, D. A. Ritchie, M. J. Kelly, and C. G. Smith. Effect of Split Gate Size on the Electrostatic Potential and 0.7 Anomaly within Quantum Wires on a Modulation-Doped GaAs/AlGaAs Heterostructure. Phys. Rev. Appl., 5:044015, (2016).

[52] A. Micolich. QUANTUM POINT CONTACTS: ’Double or nothing?’. Nature Phys., 9:530–531, (2013).

[53] H. M. Lee, K. Muraki, E. Y. Chang, and Y. Hirayama. Electronic transport character- istics in a one-dimensional constriction defined by a triple-gate structure. Appl. Phys. Lett., 100:043701, (2006).

[54] Y. J. Um, Y. H. Oh, M. Seo, S. Lee, Y. Chung, N. Kim, V. Umansky, and D. Ma- halu. Quantum point contact with large subband energy spacings. Appl. Phys. Lett., 100:183502, (2012).

[55] S. Maeda. Unpublished master thesis. Tohoku University, (2016).

[56] L. I. Glazman and A. V. Khaetskii. Nonlinear quantum conductance of a lateral microconstraint in a heterostructure. Europhys. Lett., 9:263–267, (1989).

[57] N. K. Patel, J. T. Nicholls, L. Mart´in-Moreno, M. Pepper, J. E. F. Frost, D. A. Ritchie, and G. A. C. Jones. Evolution of half plateaus as a function of electric field in a ballistic quasi-one-dimensional constriction. Phys. Rev. B, 44:13549, (1991).

[58] J. H. Davis, I. A. Larkin, and E. V. Sukhorukov. Modeling the patterned two-dimensional electron gas: Electrostatics. Appl. Phys. Lett., 77:4504, (1995).

[59] J. R. Petta, A. C. Johnson, J. M. Taylor, E. A. Laird, A. Yacoby, M. D. Lukin, C. M. Marcus, M. P. Hanson, and A. C. Gossard. Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots. Science, 309:5744, 2180–2184, (2005).

[60] A. Bogan, S. A. Studenikin, M. Korkusinski, G. C. Aers, L. Gaudreau, P. Zawadzki, A. S. Sachrajda, L. A. Tracy, J. L. Reno, and T. W. Hargett. Consequences of Spin-Orbit Coupling at the Single Hole Level: Spin-Flip Tunneling and the Anisotropic g Factor. Phys. Rev. Lett., 118:167701, (2017).

[61] F. Nichele, S Chesi, S. Hennel, A. Wittmann, C. Gerl, W. Wegscheider, D. Loss, T. Ihn, and K. Ensslin. Characterization of Spin-Orbit Interactions of GaAs Heavy Holes Using a Quantum Point Contact. Phys. Rev. Lett., 113:046801, (2014).

[62] A. Bogan, S. A. Studenikin, M. Korkusinski, L. Gaudreau, P. Zawadzki, A. S. Sachrajda, L. A. Tracy, J. L. Reno, and T. W. Hargett. Landau-Zener-Stückelberg-Majorana Interferometry of a Single Hole. Phys. Rev. Lett., 120:207701, (2018).

[63] E. C. Nowack, F. H. L. Koppens, Yu. V. Nazarov, and L. M. K. Vandersypen. Coherent Control of a Single Electron Spin with Electric Fields. Science, 318:5855, (2007).

[64] E. A. Laird, C. Barthel, E. I. Rashba, C. M. Marcus, M. P. Hanson, and A. C. Gossard. Hyperfine-Mediated Gate-Driven Electron Spin Resonance. Phys. Rev. Lett., 99:246601, (2007).

[65] R. Maurand, X. Jehl, D. Kotekar-Patil, A. Corna, H. Bohuslavskyi, R. Lavie`ville, L. Hutin, S. Barraud, M. Vinet, M. Sanquer, and S. De Franceschi. A CMOS silicon spin qubit. Nat. Commun., 7:13575, (2016).

[66] L. A. Tracy, J. L. Reno, and T. W. Hargett. Few-hole double quantum dot in an undoped GaAs/AlGaAs heterostructure. Appl. Phys. Lett., 104:123101, (2014).

[67] A. Bogan et al. Single hole spin relaxation probed by fast single-shot latched charge sensing. Communications Physics, 2:17, (2019).

[68] S. N. Shevchenko, S. Ashhab, and F. Nori. Landau-Zener-Stü"ckelberg interferometry. Phys. Rep., 492:1, (2010).

[69] M. H. Fauzi, A. Singha, M. F. Sahdan, M. Takahashi, K. Sato, K. Nagase, B. Muralidha- ran, and Y. Hirayama. Resistively detected NMR line shapes in a quasi-one dimensional electron system. Phys. Rev. B, 95:241404(R), (2017).

[70] M. H. Fauzi, M. F. Sahdan, M. Takahashi, K. Sato, K. Nagase, B. Muralidharan, and Y. Hirayama. Probing strain modulation in a gate-defined one dimensional electron system. Phys. Rev. B, 100:241301(R), (2019).

[71] J. C. Wheatley, O. E. Vilches, and W. R. Abel. Principles and Methods of Dilution Refrigeration. Physics, 4:1, 1–64, (1968).

[72] G. Batey and G. Teleberg. Principles of Dilution Refrigeration. Oxford Instrument NanoScience, (2015).

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る