リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「No Gravitational Wave from Orbiting Supermassive Kerr Black Hole—a model of matter distribution and propagation of gravitational waves inside the event horizon」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

No Gravitational Wave from Orbiting Supermassive Kerr Black Hole—a model of matter distribution and propagation of gravitational waves inside the event horizon

Hiroshi Oya 東北大学 DOI:10.33140/EESRR.06.01.01

2023.01.03

概要

The matter distribution of the extremely high-energy and dense plasma inside a supermassive rotating black hole has been theoretically investigated, starting from Einstein’s equation with the source term, in the coordinate close to the free-falling frame along the geodesics of interior matter, where the state of the force balance can be described with the formalism of modified Newtonian dynamics. For a model of equal-rotation velocity of matter, where the main component of plasma is rotating around a common axis with the same velocity close to the light velocity, with a high Lorentz factor (gamma rate), it is concluded that the matter distribution is condensed to a region with a much smaller radius than that of the event horizon of the Kerr spacetime. The gravitational waves that are generated from the condensed matter region due to the orbital motion of the binary, return towards the source, after ceasing at the critical sphere in the vacuum region of spinning Kerr spacetime. At the stage where returning waves encounter with foreword waves, the gravitational waves are deformed to standing waves that carry no energy outside of the event horizon. We conclude that no gravitational wave is radiated from the supermassive black hole binary.

この論文で使われている画像

参考文献

1. Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M. R., Acernese, F., Ackley, K., …& Zweizig, J. (2016 ). Observation of Gravitational Waves from a Binary Black Hole Merger. Phys. Rev. Lett,116, 061102.

2. Abbott, B. P., Abbott, R., Abbott, T. D., Abernathy, M. R., Acernese, F., Ackley, K., …& Zweizig, J. ( 2016). GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence. Phys. Rev. Lett,116, 241103

3. Abbott, B. P., Abbott, R., Abbott, T. D., Acernese, F., Ackley, K., Adams, C., …& Zweizig, J. (2017). GW179104:Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. Phys. Rev. Lett,118, 221101

4. Einstein, A . (1916 ). Naeherungsweise Integration der Feldgleishungen der Gravitation. Preuss. Acad. Wiss. Berlin, 688.

5. Abbott, B. P., Abbott, R., Abbott, T. D., Acernese, F., Ackley, K., Adams, C., …& Zweizig, J. (2017). GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. Phys. Rev. Lett,119, 161101

6. Chirenti, C. & Rezzolla, L.. (2016). Did GW150914 Produce a Rotating Gravastar ? Phys. Rev. D94, 084016

7. Cardoso, V. & Pani, P.. (2017). Tests for the Existence of Horizons Through Gravitational Wave Echoes. 〔gr-qc〕 arXiv:1709.01525 vol 1.

8. Glampedakis, K. & Pappas, G. (2018). How Well Can Ultracompact Bodies Imitate Black Hole Ringdowns? Phys. Rev. D97, 041502

9. Schödel, R., Ott, T., Genzel, R., Hofmann, R., Lehnert, M., Eckart, A., ….& Menten, K. M..(2002). A Star in a 15.2-Year Orbit around the Supermassive Black Hole at the Center of the Milky Way.Nature 419 694–6 [doi: 10.1038/nature01121]

10. Gehz, A., Duchene, G., & Mathews, K. ( 2003).The first Measurement of Spectral Lines in a Short-Period Star Bound to the Galaxy’s Central Black Hole. Astrophys. J. Lett, 586,127

11. Ghez, A. M. , Salim, S. , Hornstein, S. D. , Tanner, A. , Lu, J. R., Morris, M. , …& Duchêne, G.( 2005). Stella Orbits around the Galactic Center Black Hole. Astrophys. J., 620, 744

12. Eisenhauer, F., Genzel, R., Alexander, T., Abuter, R., Paumard, T., Ott, T., …& Zucker, S. (2005). SINHONIA in the Galactic Center: Young Stars and Infrared Flares in the Central Light-Month. Astrophys. J., 628, 246

13. Gillessen S, Eisenhauer F, Fritz T K, Bartko, H., Dodds-Eden, K., Pfuhl, O.,…& Genzel, R.. (2009). The Orbit of the Star S2 around SgrA* from Very Large Telescope and Keck Data. Astrophys. J. Lett., 707, 114

14. Gillessen, S., Eisenhauer. F,, Trippe, S., Alexander, T., Genzel, R., Martins, F., & Otto, T. (2009 ) Monitoring Stellar Orbits around the Massive Black Hole in the Galactic Center. Astrophys. J., 692,1075

15. Gillessen1, S., Plewa1, P. M., Eisenhauer, F., Sari, R., Waisberg, I., Habibi, M., & Genzel1, R. (2017) .An update on monitoring stellar orbits in the Galactic center, Astrophys. J., 837,30

16. Oya, H.(2019) Detection of Decameter Radio Wave Pulses from the Center Part of Our Galaxy Suggesting Sources at Rotating Super Massive Black Hole Binary, TERRAPUB, e-Lab, http://hdl.handle.net/10097/00126480

17. Oya, H.(2022). Interpretation of time-varying radio emissions of SgrA* observed by 1.3 millimeter wavelength VLBI with black hole binary concluded by decameter radio wave pulse observations, Eart & Envi Scie Res & Rev. 5(4): 185-216.

18. Fish,V.,L.,Doeleman,S.,Beaudoin,C.,Blundell,R.,Bolin,D.E.,Bower,G.C., …& Friberg,P. (2011). The 1.3 mm Wavelength VLBI of Sagittarius A*:Detection of Time-Variable Emission on Event Horizon Scales, Astrophys. Journ. Lett., 727 ,L36

19. Mehta, A., Buonanno, A., Gair, J., Miller, C., Deboer, R.,Wiescher, M.,…& Farag, E. ( 2021). Measurement of Intermediate Mass Black Hole Binaries Including the Mass Gap in the Upcoming LIGO-Virgo Observations. arXiv:2105.06366v1[gr-qc]

20. Arzoumanian, Z., Brazier, A., Burke-Spolaor, S., Chamberlin, S. J.,Chatterjee, S., Cordes, J. …& Zhu,W. W.. (2014). Gravitational Waves from Individual Supermassive Black Hole Binaries in Circular Orbits: Limits from the North American Nanohertz Observatory for Gravitational Waves. Astrophys. J. 794 ,141

21. Akiyama, K.; Alberdi, A., Alef,W., Algaba, J.C., Anantua, R.,Asada, K., … & Zebaros, M.(2022). First Sagittarius A* Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole in the Center of the Milky Way, Astrophys. J. Lett, 930; L12

22. Akiyama, K.; Alberdi, A., Alef,W., Algaba, J.C., Anantua, R.,Asada, K., … & Wouterloot, J.G.A. (2022). First Sagittarius A* Event Horizon Telescope Results. II. EHT and Multiwavelength Observations, Data Processing, and Calibration, Astrophys. J. Lett. 930; L13

23. Akiyama, K.; Alberdi, A., Alef,W., Algaba, J.C., Anantua, R.,Asada, K., … & Zhao, S.-S. (2022). First Sagittarius A* Event Horizon Telescope Results. III. Imaging of the Galactic Center Supermassive Black Hole, Astrophys. J. Lett. (2022). 930; L14

24. Akiyama, K.; Alberdi, A., Alef,W., Algaba, J.C., Anantua, R.,Asada, K., … & Chang, D. O. (2022). First Sagittarius A* Event Horizon Telescope Results. IV. Variability, Morphology, and Black Hole Mass, Astrophys. J. Lett. 930; L15

25. Akiyama, K.; Alberdi, A., Alef,W., Algaba, J.C., Anantua, R.,Asada, K., … & White,C. (2022). First Sagittarius A* Event Horizon Telescope Results. V. Testing Astrophysical Models of the Galactic Center Black Hole, Astrophys. J. Lett., 930; L16

26. Akiyama, K.; Alberdi, A., Alef,W., Algaba, J.C., Anantua, R.,Asada, K., … & Zhao, S.-S. (2022).First Sagittarius A* Event Horizon Telescope Results. VI. Testing the Black Hole Metric, Astrophys. J. Lett., 930; L17,

27. Miyoshi, M. Kato, Y.. & Makino, J. (2022). The Jet and Resolved Features of the Central Supermassive Black Hole of M87 Observed with the Event Horizon Telescope (EHT) Astrophys. J., 933,36

28. Akiyama,K., Alberdi, A. Alef,W., Asada, K., Azulay,R , Baczko,A.-K.,...& Ziurys, L. (2019). First M87 Event Horizon Telescope Results. I: The Shadow of the Supermassive Black Hole, Astrophys. J. Lett., 875,L1

29. Akiyama,K., Alberdi, A. Alef,W., Asada, K., Azulay,R , Baczko,A.-K.,...& Ziurys, L. (2019). First M87 Event Horizon Telescope Results. II: Array and Instrumentation, Astrophys. J. Lett., 875,L2

30. Akiyama,K., Alberdi, A. Alef,W., Asada, K., Azulay,R , Baczko,A.-K.,…. & Yamaguti, P. (2019). First M87 Event Horizon Telescope Results. III. Data Processing and Calibration, Astrophys. J. Lett., 875, L3

31. Akiyama,K., Alberdi, A. Alef,W., Asada, K., Azulay,R , Baczko,A.-K.,…. & Yamaguti, P. (2019).First M87 Event Horizon Telescope Results. IV.:,Imaging the Central Supermassive Black Hole, Astrophys. J. Lett.875:L4

32. Akiyama,K., Alberdi, A. Alef,W., Asada, K., Azulay,R , Baczko,A.-K.,…& Zhang, S. (2019). First M87 Event Horizon Telescope Results. V.: Physical Origin of the Asymmetric Ring , Astrophys J. Lett., 875,L5

33. Akiyama,K., Alberdi, A. Alef,W., Asada, K., Azulay,R , Baczko,A.-K.,…. & Yamaguti, P. (2019).First M87 Event Horizon Telescope Results. VI.;The Shadow and Mass of the Central Black Hole., Astrophys. J. Lett., 875:,L6-ab1141

34. Fish,V,L.,Johnson,M.D.,Doeleman1,S.S., Broderick,A,E., Psaltis, D., Lu.R.-S., …& Ziurys,L.M.(2016). Persistent asymmetric structure of Sagittarius A* on event horizon scales, Astrophys, J., 820,90

35. McInnes, B. & Ong, Y. C., (2015). A Note on Physical Mass and the Thermodynamics of AdS-Kerr Black Holes, arXiv:1506.01248v2[gr-qc] 8.

36. Chew, X. Y. & Ong, Y. C.(2020). Interior Volume of Kerr-AdS Black Holes. Phys. Rev. D101, 104026

37. Pandya, A. & Pretorius, F. (2020). The Rotating Black Hole Iinterior: Insights from gravitational collapse in AdS3 spacetime. Phys. Rev. D 101, 104026

38. Einstein A (1922) The Meaning of Relativity, Lecture Note , Princeton University Press.

39. Kokkotas, K. D. & Schmidt, B. G. (1999). Quasi-Normal Modes of Stars and Black Holes , Living Reviews in Relativity volume 2, Article number: 2

40. Emanuele ,B., Cardoso,V., Starlinets,O .(2009). Qusinormal Modes of Black Holes and Black Branes., Class. Quantum. Grav.. 26, 163001

41. Epstein, R . & Wagoner, R.. V. (1975). Post-Newtonian Generation of Gravitational Waves., Astrophys. J., 197, 717

42. Blanchet, L. (1996). Energy Losses by Gravitational Radiation in Inspiraling Compact Binaries to 5/2 Post-Newtonian Order. Phys. Rev. D 54, 1417

43. Thorne, K. S. & Campolattaro, A. (1967). Non-Radial Pulsation of General-Relativistic Stellar Models. I. Analytic Analysis for L >= 2., Astrophys.J., 149 ,591.

44. Kerr, R. P. (1963). Gravitational Field of a Spinning Mass as an Example of Algebraically Special Metrics., Phys. Rev. Lett. 11, 237

45. Landau.L.D. and Lifshitz, E.M.(1967). Classical Theory of Fields (Third revised English Edition),Pergamon Press, Oxford, New York, P 325 .

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る