リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Non-Standard Neutrino Interaction Analysis with Atmospheric Neutrino Data in Super-Kamiokande I-IV and the Design of the Hyper-Kamiokande Outer Detector」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Non-Standard Neutrino Interaction Analysis with Atmospheric Neutrino Data in Super-Kamiokande I-IV and the Design of the Hyper-Kamiokande Outer Detector

TAANI, Mahdi 名古屋大学

2021.06.25

概要

Neutrinos are the most abundant massive particle in the universe and they very rarely interact with anything, travelling the universe largely undisturbed. Due to their low interaction rates, neutrinos created in stars or in different galaxies can still reach us without being stopped. This makes them an excellent source to look far out into the universe and understand star formation and supernovae as well as back in time to understand the early universe.

As they rarely interact, large detectors are required in order to increase the chance of detecting a neutrino. One such large detector is called Super-Kamiokande or Super-K; it is a 50 kton tank filled with ultrapure water and 13,000 highly sensitive light detectors which are used to observe neutrino interactions. Super- K has been taking data since 1996 and has detected many neutrinos from various sources. Examining the energy, direction and flavour of the detected neutrinos allows us to determine their fundamental properties. All known fundamental particles and the interactions between them are described by a theory known as the Standard Model of particle physics. The theory is very successful and experiments have consistently verified its predictions. However, the Standard Model does not correctly describe the neutrino. For many years these particles were thought to be massless but experimental evidence shows that the particles do have mass. These particles come in three flavours and experiments have proven that a neutrino of one flavour can change into a neutrino of a different flavour.

This property of neutrinos is exciting as it indicates new physics beyond the Standard Model. Extensions to the Standard Model which account for the neutrino mass have been proposed; naturally, these extended models allow exotic interactions which are not allowed by the Standard Model.

These interactions are known as non- standard interactions (NSIs) and have not yet been observed. Observation of neutrino NSIs could indicate the existence of new particles or other exotic physics scenarios. In this thesis, 15 years of Super-K data has been analysed in order to look for possible non-standard interactions. No evidence of NSI was found and tight limits have been set on the possible strength of neutrino NSIs.

While the understanding of neutrino properties has advanced significantly in the last two decades, some questions remain open. Possibly the most important question is whether or not neutrinos and antineutrinos, their antimatter counterpart, behave in the same way. If they do not, then neutrinos could be the reason that the universe is dominated by matter while there is hardly any antimatter. To answer this question a much larger number of neutrinos must be detected which requires a larger detector.

In 2028 a new large detector Hyper-Kamiokande (Hyper-K), eight times larger than Super-K, will begin taking data. This thesis details the work carried out to design and eventually build Hyper-K. The detector will observe many neutrino events and will make use of a veto system to reject non-neutrino events. The work shown in this thesis is the design and optimisation of the Hyper-K veto detector.

この論文で使われている画像

参考文献

[1] Standard Model of Elementary Particles, 2019 (accessed May 12, 2020). URL https://en.wikipedia.org/wiki/Standard_Model#/media/File: Standard_Model_of_Elementary_Particles.svg.

[2] International Association of Geomagnetism and Aeronomy, Working Group V-MOD. Participating members . International Geomagnetic Reference Field: the eleventh generation. Geophysical Journal International, 183(3):1216–1230, 2010. doi: 10.1111/j.1365-246X.2010. 04804.x. URL https://onlinelibrary.wiley.com/doi/abs/10.1111/j. 1365-246X.2010.04804.x.

[3] M. G. Aartsen et al. Neutrino oscillation studies with IceCube-DeepCore. Nuclear Physics B, 908:161 – 177, 2016. ISSN 0550-3213. doi: https://doi. org/10.1016/j.nuclphysb.2016.03.028. URL http://www.sciencedirect. com/science/article/pii/S0550321316300141. Neutrino Oscillations: Celebrating the Nobel Prize in Physics 2015.

[4] M. G. Aartsen et al. Search for nonstandard neutrino interactions with IceCube DeepCore. Physical Review D, 97(7):072009, 2018.

[5] M. G. Aartsen et al. Measurement of Atmospheric Neutrino Oscillations at 6–56 GeV with IceCube DeepCore. Physical Review Letters, 120:071801, Feb 2018. doi: 10.1103/PhysRevLett.120.071801. URL https://link. aps.org/doi/10.1103/PhysRevLett.120.071801.

[6] M. G. Aartsen et al. Search for nonstandard neutrino interactions with IceCube DeepCore. Physical Review D, 97:072009, Apr 2018. doi: 10. 1103/PhysRevD.97.072009. URL https://link.aps.org/doi/10.1103/ PhysRevD.97.072009.

[7] J. N. Abdurashitov et al. Measurement of the solar neutrino capture rate with gallium metal. Physical Review C, 60(5):055801, 1999.

[8] K. Abe et al. Proposal for an Extended Run of T2K to 20× 1021 POT. arXiv preprint arXiv:1609.04111, 242.

[9] K. Abe et al. The T2K experiment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 659(1):106–135, 2011.

[10] K. Abe et al. Solar neutrino results in Super-Kamiokande-III. Physical Review D, 83:052010, Mar 2011. doi: 10.1103/PhysRevD.83.052010. URL https://link.aps.org/doi/10.1103/PhysRevD.83.052010.

[11] K. Abe et al. The T2K experiment. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 659(1):106–135, 2011.

[12] K. Abe et al. Calibration of the Super-Kamiokande detector. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 737:253–272, 2014. ISSN 01689002. doi: 10.1016/j.nima.2013.11.081.

[13] K. Abe et al. Measurement of the intrinsic electron neutrino component in the T2K neutrino beam with the ND280 detector. Physical Review D, 89:092003, May 2014. doi: 10.1103/PhysRevD.89.092003. URL https: //link.aps.org/doi/10.1103/PhysRevD.89.092003.

[14] K. Abe et al. Observation of electron neutrino appearance in a muon neutrino beam. Physical Review Letters, 112:061802, Feb 2014. doi: 10.1103/PhysRevLett.112.061802. URL https://link.aps.org/doi/10. 1103/PhysRevLett.112.061802.

[15] K. Abe et al. Solar neutrino measurements in Super-KamiokandeIV. Physical Review D, 94:052010, Sep 2016. doi: 10.1103/PhysRevD. 94.052010. URL https://link.aps.org/doi/10.1103/PhysRevD.94. 052010.

[16] K. Abe et al. Combined Analysis of Neutrino and Antineutrino Oscillations at T2K. Physical Review Letters, 118:151801, Apr 2017. doi: 10.1103/ PhysRevLett.118.151801. URL https://link.aps.org/doi/10.1103/ PhysRevLett.118.151801.

[17] K. Abe et al. Hyper-Kamiokande Design Report. 2018. URL https: //arxiv.org/abs/1805.04163.

[18] K. Abe et al. Atmospheric neutrino oscillation analysis with external constraints in Super-Kamiokande I-IV. Physical Review D, 97(7):72001, 2018. ISSN 24700029. doi: 10.1103/PhysRevD.97.072001. URL https: //doi.org/10.1103/PhysRevD.97.072001.

[19] K. Abe et al. T2K ND280 Upgrade-Technical Design Report. Technical report, 2019.

[20] S. Abe et al. Precision Measurement of Neutrino Oscillation Parameters with KamLAND. Physical Review Letters, 100:221803, Jun 2008. doi: 10.1103/PhysRevLett.100.221803. URL https://link.aps.org/doi/10. 1103/PhysRevLett.100.221803.

[21] Y. Abe et al. Indication of Reactor ~νe Disappearance in the Double Chooz Experiment. Physical Review Letters, 108:131801, Mar 2012. doi: 10.1103/PhysRevLett.108.131801. URL https://link.aps.org/doi/10. 1103/PhysRevLett.108.131801.

[22] R. Acciarri et al. Long-baseline neutrino facility (LBNF) and deep underground neutrino experiment (DUNE) conceptual design report, volume 4 the DUNE detectors at LBNF. arXiv preprint arXiv:1601.02984, 2016.

[23] M. A. Acero et al. First measurement of neutrino oscillation parameters using neutrinos and antineutrinos by NOvA. Physical Review Letters, 123: 151803, Oct 2019. doi: 10.1103/PhysRevLett.123.151803. URL https: //link.aps.org/doi/10.1103/PhysRevLett.123.151803.

[24] P. Adamson et al. Measurement of the Neutrino Mass Splitting and Flavor Mixing by MINOS. Physical Review Letters, 106:181801, May 2011. doi: 10.1103/PhysRevLett.106.181801. URL https://link.aps.org/doi/10. 1103/PhysRevLett.106.181801.

[25] P. Adamson et al. Search for flavor-changing non-standard neutrino interactions by MINOS. Physical Review D, 88(7):072011, 2013.

[26] P. Adamson et al. First measurement of muon-neutrino disappearance in NOvA. Physical Review D, 93:051104, Mar 2016. doi: 10.1103/PhysRevD. 93.051104. URL https://link.aps.org/doi/10.1103/PhysRevD.93. 051104.

[27] S. Agostinelli et al. GEANT4: A Simulation toolkit. Nucl. Instrum. Meth., A506:250–303, 2003. doi: 10.1016/S0168-9002(03)01368-8.

[28] A. A. Aguilar-Arevalo et al. First measurement of the muon neutrino charged current quasielastic double differential cross section. Physical Review D, 81:092005, May 2010. doi: 10.1103/PhysRevD.81.092005.

[29] Q. R. Ahmad et al. Measurement of the Rate of νe + d → p + p + e − Interactions Produced by 8B Solar Neutrinos at the Sudbury Neutrino Observatory. Physical Review Letters, 87:071301, Jul 2001. doi: 10.1103/PhysRevLett.87.071301. URL https://link.aps.org/doi/10. 1103/PhysRevLett.87.071301.

[30] Q. R. Ahmad et al. Direct evidence for neutrino flavor transformation from neutral-current interactions in the Sudbury Neutrino Observatory. Physical review letters, 89(1):011301, 2002.

[31] Q. R. Ahmad et al. Direct Evidence for Neutrino Flavor Transformation from Neutral-Current Interactions in the Sudbury Neutrino Observatory. Physical Review Letters, 89:011301, Jun 2002. doi: 10.1103/PhysRevLett. 89.011301. URL https://link.aps.org/doi/10.1103/PhysRevLett.89. 011301.

[32] J. K. Ahn et al. Observation of Reactor Electron Antineutrinos Disappearance in the RENO Experiment. Physical Review Letters, 108: 191802, May 2012. doi: 10.1103/PhysRevLett.108.191802. URL https: //link.aps.org/doi/10.1103/PhysRevLett.108.191802.

[33] E. K. Akhmedov, M. A. T´ortola, and J. W. F. Valle. A simple analytic three-flavour description of the day-night effect in the solar neutrino flux. Journal of High Energy Physics, 2004(05):057, 2004.

[34] J. Alcaraz et al. Cosmic protons. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 490(1-2):27–35, sep 2000. ISSN 03702693. doi: 10.1016/S0370-2693(00)00970-9.

[35] J. Alcaraz et al. Helium in near earth orbit. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 494(3-4):193–202, nov 2000. ISSN 03702693. doi: 10.1016/S0370-2693(00)01193-X.

[36] E. N. Alexeyev, , et al. Detection of the neutrino signal from SN 1987A in the LMC using the INR Baksan underground scintillation telescope. Physics Letters B, 205(2-3):209–214, 1988.

[37] B. W. Allardyce et al. Pion reaction cross sections and nuclear sizes. Nuclear Physics A, 209(1):1 – 51, 1973. ISSN 0375-9474. doi: https://doi.org/10. 1016/0375-9474(73)90049-3.

[38] W. W. M. Allison et al. The atmospheric neutrino flavor ratio from a 3.9 fiducial kiloton-year exposure of Soudan 2. Physics Letters B, 449(1-2): 137–144, 1999.

[39] G. Ambrosini et al. K/π production ratios from 450 GeV/c protons on beryllium. Physics Letters B, 420(1-2):225–232, 1998.

[40] F. P. An et al. Observation of Electron-Antineutrino Disappearance at Daya Bay. Physical Review Letters, 108:171803, Apr 2012. doi: 10.1103/PhysRevLett.108.171803. URL https://link.aps.org/doi/10. 1103/PhysRevLett.108.171803.

[41] M. Apollonio et al. Search for neutrino oscillations on a long base-line at the CHOOZ nuclear power station. The European Physical Journal C-Particles and Fields, 27(3):331–374, 2003.

[42] D. Ashery et al. True absorption and scattering of pions on nuclei. Physical Review C, 23:2173–2185, May 1981. doi: 10.1103/PhysRevC.23.2173.

[43] US Standard Atmosphere. US standard atmosphere. National Oceanic and Atmospheric Administration, 1976.

[44] G. D. Barr et al. Three-dimensional calculation of atmospheric neutrinos. Physical Review D - Particles, Fields, Gravitation and Cosmology, 70(2): 13, 2004. ISSN 15502368. doi: 10.1103/PhysRevD.70.023006.

[45] T. Barszczak. The Efficient discrimination of electron and pi-zero events in a water Cherenkov detector and the applicati on to neutrino oscillation experiments. Technical report, 2005.

[46] G. Battistoni et al. The FLUKA atmospheric neutrino flux calculation. Astroparticle Physics, 19(2):269–290, 2003. ISSN 09276505. doi: 10.1016/ S0927-6505(02)00246-3.

[47] J. F. Beacom. The diffuse supernova neutrino background. Annual Review of Nuclear and Particle Science, 60:439–462, 2010.

[48] R. Becker-Szendy et al. Electron-and muon-neutrino content of the atmospheric flux. Physical Review D, 46(9):3720, 1992.

[49] R Becker-Szendy et al. IMB-3 : a large water Cherenkov detector for nucleon decay and neutrino interactions. Technical report, 1993.

[50] A. Bodek and U. K. Yang. Modeling Neutrino and Electron Scattering Inelastic Cross Sections, 2003.

[51] R. Brun et al. GEANT3. 1987.

[52] CAEN. The specification for the CAEN DT5742 waveform digitiser. URL https://www.caen.it/products/dt5742/.

[53] A. Capella et al. Structure functions and low x physics. Physics Letters B, 337(3-4):358–366, 1994.

[54] P. A. Cerenkov. Visible Radiation Produced by Electrons Moving in a ˇ Medium with Velocities Exceeding that of Light. Physical Review, 52(4): 378–379, aug 1937. ISSN 0031-899X. doi: 10.1103/PhysRev.52.378.

[55] S. Chandrasekhar. An introduction to the study of stellar structure, volume 2. Courier Corporation, 1957.

[56] R. Claus et al. A Wavelength Light Collector For A Water Cherenkov Detector. Nuclear Instruments and Methods in Physics Research, 6:540, 1955.

[57] JASCO Corporation. JASCO FP-6500 is a spectrofluorometer produced by JASCO Inc., . URL http://www.jascoinc.com/docs/ product-spec-sheets/FP6500_072.pdf.

[58] JASCO Corporation. JASCO V-550 is a spectrophotometer produced by JASCO Inc., . URL http://www.jascoinc.com/.

[59] JASCO Corporation. JASCO V-650 is a spectrophotometer produced by JASCO Inc., . URL http://www.jascoinc.com/.

[60] S. Davidson et al. Present and future bounds on non-standard neutrino interactions. Journal of High Energy Physics, 2003(03):011, 2003.

[61] E. R. Davies. Machine vision: theory, algorithms, practicalities. Elsevier, 2004.

[62] R. Davis et al. Search for neutrinos from the sun. Physical Review Letters, 20:1205–1209, May 1968. doi: 10.1103/PhysRevLett.20.1205. URL https: //link.aps.org/doi/10.1103/PhysRevLett.20.1205.

[63] P. de Perio. Neut pion fsi. AIP Conference Proceedings, 1405(1):223–228, 2011. doi: 10.1063/1.3661590.

[64] S. Desai. High Energy Neutrino Astrophysics with Super-Kamiokande. PhD thesis, Boston University, 2004.

[65] S. Dimopoulos, S. Raby, and F. Wilczek. Proton decay in supersymmetric models. Physics Letters B, 112(2):133–136, 1982.

[66] Dupont. Tyvek is a Dupont registered trademark. URL http://www. dupont.com.

[67] A. M. Dziewonski and D. L. Anderson. Preliminary reference earth model. Physics of the earth and planetary interiors, 25(4):297–356, 1981.

[68] ET Enterprices. The datasheet for the ETEL 9320KFLB PMT. URL http://et-enterprises.com/images/data_sheets/9320KFLB.pdf.

[69] I. Esteban et al. Global analysis of three-flavour neutrino oscillations: synergies and tensions in the determination of θ 23, δ CP, and the mass ordering. Journal of High Energy Physics, 2019(1):106, 2019. NuFIT 4.1 (2019), http://www.nu-fit.org/.

[70] Y. Farzan and M. T´ortola. Neutrino oscillations and non-standard interactions. Frontiers in Physics, 6:10, 2018.

[71] P. Fernandez Menendez. Neutrino Physics in Present and Future Kamioka Water- Cerenkov Detectors with Neutron Tagging Abstract ( English ). Phd, University Autonomous of Madrid, 2017.

[72] G. L. Fogli et al. Getting the most from the statistical analysis of solar neutrino oscillations. Physical Review D, 66:053010, Sep 2002. doi: 10. 1103/PhysRevD.66.053010. URL https://link.aps.org/doi/10.1103/ PhysRevD.66.053010.

[73] J. A. Formaggio and G. P. Zeller. From eV to EeV: Neutrino cross sections across energy scales. Rev. Mod. Phys., 84:1307–1341, Sep 2012. doi: 10. 1103/RevModPhys.84.1307.

[74] A. Friedland and C. Lunardini. Test of tau neutrino interactions with atmospheric neutrinos and K2K data. Physical Review D, 72(5):053009, 2005.

[75] A. Friedland, C. Lunardini, and C. Pena-Garay. Solar neutrinos as probes of neutrino–matter interactions. Physics Letters B, 594(3-4):347–354, 2004.

[76] M. Friend. J-PARC accelerator and neutrino beamline upgrade programme. In Journal of Physics: Conference Series, volume 888, page 012042. IOP Publishing, 2017.

[77] C. Fr¨ohlich and J. Lean. The Sun’s total irradiance: Cycles, trends and related climate change uncertainties since 1976. Geophysical Research Letters, 25(23):4377–4380, 1998.

[78] Y. Fujii et al. Quasielastic π −-nucleus scattering at 950MeV/c. Physical Review C, 64:034608, Aug 2001. doi: 10.1103/PhysRevC.64.034608.

[79] S. Fukuda et al. Solar B 8 and hep Neutrino Measurements from 1258 Days of Super-Kamiokande Data. Physical Review Letters, 86(25):5651, 2001.

[80] S Fukuda et al. The Super-Kamiokande detector. Physics Research A, 501: 419, 2003. doi: 10.1016/S0168-9002(03)00425-X.

[81] Y. Fukuda et al. Atmospheric muon-neutrino / electron-neutrino ratio in the multigev energy range. Physics Letters B, 335(NGTHEP-94-1):237–245, 1994.

[82] Y. Fukuda et al. Solar neutrino data covering solar cycle 22. Physical Review Letters, 77(9):1683, 1996.

[83] Y. Fukuda et al. Evidence for oscillation of atmospheric neutrinos. Physical Review Letters, 81:1562–1567, Aug 1998. doi: 10.1103/PhysRevLett.81. 1562. URL https://link.aps.org/doi/10.1103/PhysRevLett.81.1562.

[84] T. A. Gabriel, J. D. Amburgey, and B. L. Bishop. CALOR: A Monte Carlo Program Package for the Design and Analysis of Calorimeter Systems. 1977.

[85] M. Gl¨uck, E. Reya, and A. Vogt. Dynamical parton distributions revisited. The European Physical Journal C - Particles and Fields, 5(3):461–470, Sep 1998. ISSN 1434-6052. doi: 10.1007/s100529800978.

[86] M. C. Gonzalez-Garcia and M. Maltoni. Determination of matter potential from global analysis of neutrino oscillation data. Journal of High Energy Physics, 2013(9):152, 2013.

[87] R. Gran et al. Measurement of the quasielastic axial vector mass in neutrino interactions on oxygen. Physical Review D, 74:052002, Sep 2006. doi: 10. 1103/PhysRevD.74.052002. URL https://link.aps.org/doi/10.1103/ PhysRevD.74.052002.

[88] L. Haegel. The latest T2K neutrino oscillation results. arXiv preprint arXiv:1709.04180, 2017.

[89] T. Haines. Neutrinos from SN1987a in the IMB detector. 1988.

[90] S. Haino et al. Measurements of primary and atmospheric cosmic-ray spectra with the BESS-TeV spectrometer. Physics Letters, Section B: Nuclear, Elementary Particle and High-Energy Physics, 594(1-2):35–46, jul 2004. ISSN 03702693. doi: 10.1016/j.physletb.2004.05.019.

[91] Hamamatsu. H2431-50 is a pmt manufactured by hamamatsu., . URL https://www.hamamatsu.com.

[92] Hamamatsu. R1408 is a PMT manufactured by Hamamatsu., . URL https: //www.hamamatsu.com.

[93] Hamamatsu. R3600 is a PMT manufactured by Hamamatsu., . URL https: //www.hamamatsu.com.

[94] Y. Hayato. A neutrino interaction simulation program library NEUT. Acta Phys. Polon., B40:2477–2489, 2009.

[95] A. E. Hedin. Extension of the MSIS thermosphere model into the middle and lower atmosphere. Journal of Geophysical Research: Space Physics, 96 (A2):1159–1172, 1991.

[96] A. J. Heijboer. Track Reconstruction and Point Source Searches with ANTARES. PhD thesis, Universiteit van Amsterdam, 2004.

[97] Hermetic. HT-Seal F-119 is a sealant produced by Hermetic. URL https: //www.hermetic.co.jp/item/pipe-sealant/182.

[98] P. W. Higgs. Broken symmetries and the masses of gauge bosons. Physical Review Letters, 13(16):508, 1964.

[99] K. S. Hirata et al. Observation in the Kamiokande-II detector of the neutrino burst from supernova SN1987A. Physical Review D, 38(2):448, 1988.

[100] M. Honda et al. Calculation of the flux of atmospheric neutrinos. Physical Review D, 52:4985–5005, Nov 1995. doi: 10.1103/PhysRevD.52.4985.

[101] M. Honda et al. Comparison of 3-dimensional and 1-dimensional schemes in the calculation of atmospheric neutrinos. Physical Review D - Particles, Fields, Gravitation and Cosmology, 64(5):12, 2001. ISSN 15502368. doi: 10.1103/PhysRevD.64.053011.

[102] M. Honda et al. New calculation of the atmospheric neutrino flux in a threedimensional scheme. Physical Review D - Particles, Fields, Gravitation and Cosmology, 70(4), 2004. ISSN 15502368. doi: 10.1103/PhysRevD.70. 043008.

[103] M. Honda et al. Calculation of atmospheric neutrino flux using the interaction model calibrated with atmospheric muon data. Physical Review D - Particles, Fields, Gravitation and Cosmology, 75(4), 2007. ISSN 15507998. doi: 10.1103/PhysRevD.75.043006.

[104] M. Honda et al. Improvement of low energy atmospheric neutrino flux calculation using the JAM nuclear interaction model. Physical Review D - Particles, Fields, Gravitation and Cosmology, 83(12), 2011. ISSN 15507998. doi: 10.1103/PhysRevD.83.123001.

[105] H. Ikeda et al. Front-end hybrid circuit for super-KAMIOKANDE. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 320(1-2):310–316, aug 1992. ISSN 0168-9002. doi: 10.1016/0168-9002(92)90791-2.

[106] Y. Ikeda. J-PARC status update. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 600(1):1–4, 2009.

[107] A. F. M. Ishaq et al. Thermal neutron capture in isotopes of nickel. Zeitschrift f¨ur Physik A Atoms and Nuclei, 281(4):365–372, dec 1977. ISSN 0340-2193. doi: 10.1007/BF01408184. URL http://link.springer.com/ 10.1007/BF01408184.

[108] C. Ishihara. Full three flavor oscillation analysis of atmospheric neutrino data observed in Super-Kamiokande. PhD thesis, 2010.

[109] T. James Irvine. Development of Neutron-Tagging Techniques and Application to Atmospheric Neutrino Oscillation Analysis in SuperKamiokande. Phd, University of Tokyo, 2014.

[110] J. V. Jelley. Cerenkov radiation and its applications. British Journal of Applied Physics, 6:227, 1955.

[111] M. Jiang et al. Atmospheric neutrino oscillation analysis with improved event reconstruction in Super-Kamiokande IV. Progress of Theoretical and Experimental Physics, 2019(5):053F01, 2019.

[112] M. K. Jones et al. Pion absorption above the ∆(1232) resonance. Physical Review C, 48:2800–2817, Dec 1993. doi: 10.1103/PhysRevC.48.2800.

[113] T. Kajita. Discovery of neutrino oscillations. Reports on Progress in Physics, 69(6):1607–1635, may 2006. doi: 10.1088/0034-4885/69/6/r01. URL https://doi.org/10.1088%2F0034-4885%2F69%2F6%2Fr01.

[114] R. R. Kinsey et al. The NUDAT/PCNUDAT program for nuclear data. 10 1996. URL https://www.nndc.bnl.gov/nudat2/reCenter.jsp?z=98&n= 154. Data extracted from the NUDAT database, 27 June 2019.

[115] H. W. Koch and J. W. Motz. Bremsstrahlung cross-section formulas and related data. Reviews of modern physics, 31(4):920, 1959.

[116] Y. Koshio. Solar results from Super-Kamiokande. In AIP Conference Proceedings, volume 1666, page 090001. AIP Publishing LLC, 2015.

[117] Kuraray. Prototype WLS plate manufactured by Kuraray. URL https: //www.kuraray.com/.

[118] Labsphere. Spectralon is diffuse highly reflective target produced by Labsphere. URL https://www.labsphere. com/labsphere-products-solutions/materials-coatings-2/ coatings-materials/spectralon/.

[119] P. Langacker. Grand unified theories and proton decay. Physics Reports, 72(4):185–385, 1981.

[120] T. S. H. Lee and R. P. Redwine. Pion-nucleus interactions. Annual Review of Nuclear and Particle Science, 52(1):23–63, 2002. doi: 10.1146/annurev. nucl.52.050102.090713.

[121] J. Liao, D. Marfatia, and K. Whisnant. Nonstandard interactions in solar neutrino oscillations with Hyper-Kamiokande and JUNO. Physics Letters B, 771:247–253, 2017.

[122] P. Lipari. The east–west effect for atmospheric neutrinos. Astroparticle Physics, 14(3):171–188, 2000.

[123] C. H. Llewellyn-Smith. Neutrino Reactions at Accelerator Energies. Phys. Rept., 3:261–379, 1972. doi: 10.1016/0370-1573(72)90010-5.

[124] Z. Maki, M. Nakagawa, and S. Sakata. Remarks on the Unified Model of Elementary Particles. Progress of Theoretical Physics, 28(5):870–880, 11 1962. ISSN 0033-068X. doi: 10.1143/PTP.28.870. URL https://doi. org/10.1143/PTP.28.870.

[125] M. Maltoni and A. Y. Smirnov. Solar neutrinos and neutrino physics. The European Physical Journal A, 52(4):87, 2016.

[126] G. Mie. Beitr¨age zur Optik tr¨uber Medien, speziell kolloidaler Metall¨osungen. Annalen der Physik, 330(3):377–445, jan 1908. ISSN 00033804. doi: 10.1002/andp.19083300302. URL http://doi.wiley.com/ 10.1002/andp.19083300302.

[127] S.P. Mikheev and A.Y. Smirnov. Resonance enhancement of oscillations in matter and solar neutrino spectroscopy. Sov. J. Nucl. Phys. (Engl. Transl.); (United States), 42:6, 12 1985.

[128] O. G. Miranda and H. Nunokawa. Non standard neutrino interactions: Current status and future prospects. New Journal of Physics, 17(9), 2015. ISSN 13672630. doi: 10.1088/1367-2630/17/9/095002.

[129] O. G. Miranda, M. A. T´ortola, and J. W. F. Valle. Are solar neutrino oscillations robust? Journal of High Energy Physics, 2006(10):008, 2006.

[130] G. Mitsuka. Study of Non-Standard Neutrino Interactions with Atmospheric Neutrino Data in Super-Kamiokande. Phd, University Of Tokyo, 2009. URL http://www-sk.icrr.u-tokyo.ac.jp/sk/{_}pdf/articles/ dthesis{_}feb9-mitsuka.pdf.

[131] G. Mitsuka et al. Study of nonstandard neutrino interactions with atmospheric neutrino data in Super-Kamiokande I and II. Physical Review D, 84(11):113008, dec 2011. ISSN 1550-7998. doi: 10.1103/PhysRevD.84. 113008. URL https://journals.aps.org/prd/pdf/10.1103/PhysRevD. 84.113008https://link.aps.org/doi/10.1103/PhysRevD.84.113008.

[132] J. Nieves, J. E. Amaro, and M. Valverde. Inclusive quasielastic chargedcurrent neutrino-nucleus reactions. Physical Review C, 70:055503, Nov 2004. doi: 10.1103/PhysRevC.70.055503. URL https://link.aps.org/ doi/10.1103/PhysRevC.70.055503.

[133] J. Nieves et al. Inclusive charged-current neutrino-nucleus reactions. Physical Review C, 83:045501, Apr 2011. doi: 10.1103/PhysRevC.83. 045501.

[134] H. Nishino. Search for Nucleon Decay into Charged Antilepton plus Meson in Super-Kamiokande. Phd, University of Tokyo, 2009.

[135] T. Ohlsson. Status of non-standard neutrino interactions. sep 2012. doi: 10.1088/0034-4885/76/4/044201. URL http://arxiv.org/abs/ 1209.2710http://dx.doi.org/10.1088/0034-4885/76/4/044201.

[136] K. A. Olive. Review of particle physics. Chinese physics C, 38(9):090001– 090001, 2014.

[137] ORTEC. The specification for the ORTEC EASY-MCA., . URL https://www.ortec-online.com/products/electronics/ multichannel-analyzers-mca/basic-analog/easy-mca-2k-or-8k.

[138] ORTEC. The specification for the ORTEC 570 amplifier., . URL https: //www.ortec-online.com/products/electronics/amplifiers/570.

[139] A. Palazzo. Hint of nonstandard Mikheyev-Smirnov-Wolfenstein dynamics in solar neutrino conversion. Physical Review D, 83:101701, May 2011. doi: 10.1103/PhysRevD.83.101701. URL https://link.aps.org/doi/10. 1103/PhysRevD.83.101701.

[140] L. Pik. Study of the neutrino mass hierarchy with the atmospheric neutrino data observed in Super-Kamiokande. PhD thesis, 2012.

[141] B. Pontecorvo. Inverse beta processes and nonconservation of lepton charge. Sov. Phys. JETP, 7:172–173, 1958. [Zh. Eksp. Teor. Fiz.34,247(1957)].

[142] The Hyper-Kamiokande Proto-Collaboration. Physics potentials with the second Hyper-Kamiokande detector in Korea. Progress of Theoretical and Experimental Physics, 2018(6), 06 2018. ISSN 2050-3911. doi: 10.1093/ ptep/pty044. URL https://doi.org/10.1093/ptep/pty044. 063C01.

[143] D. Rein and L. M. Sehgal. Neutrino-excitation of baryon resonances and single pion production. Annals of Physics, 133(1):79 – 153, 1981. ISSN 0003-4916. doi: https://doi.org/10.1016/0003-4916(81)90242-6.

[144] D Rein and L. M. Sehgal. Coherent π0 production in neutrino reactions. Nuclear Physics B, 223(1):29 – 44, 1983. ISSN 0550-3213. doi: https: //doi.org/10.1016/0550-3213(83)90090-1.

[145] A. Renshaw et al. First Indication of Terrestrial Matter Effects on Solar Neutrino Oscillation. Physical Review Letters, 112:091805, Mar 2014. doi: 10.1103/PhysRevLett.112.091805.

[146] E. Richard. Studies Of The Energy, Azimuthal, and Time Specta of the Atmospheric Neutrino Flux at Super-Kamiokande. PhD thesis, 2015.

[147] T. Sanuki et al. Precise Measurement of Cosmic-Ray Proton and Helium Spectra with the BESS Spectrometer. The Astrophysical Journal, 545(2): 1135–1142, dec 2000. ISSN 0004-637X. doi: 10.1086/317873.

[148] N. V. Smirnov. Estimate of deviation between empirical distribution functions in two independent samples. Bulletin Moscow University, 2(2): 3–16, 1939.

[149] R. A. Smith and E. J. Moniz. NEUTRINO REACTIONS ON NUCLEAR TARGETS. Nucl. Phys., B43:605, 1972. doi: 10.1016/ 0550-3213(75)90612-4,10.1016/0550-3213(72)90040-5. [Erratum: Nucl. Phys.B101,547(1975)].

[150] M. Smy. Low energy event reconstruction and selection in SuperKamiokande-III. Proceedings of 30th International Cosmic Ray Conference, 2007.

[151] A Suzuki et al. Improvement of 20 in. diameter photomultiplier tubes. Technical report, 1993.

[152] Eljen Technology. EJ-286 is a wavelength shifting plate produced by Eljen Technology. URL https://eljentechnology.com/products/ wavelength-shifting-plastics/ej-280-ej-282-ej-284-ej-286.

[153] S. Tobayama. An analysis of the oscillation of atmospheric neutrinos. PhD thesis, University of British Columbia, 2016.

[154] L. V. Volkova. Energy Spectra and Angular Distributions of Atmospheric Neutrinos. Sov. J. Nucl. Phys., 31:784–790, 1980. [Yad. Fiz.31,1510(1980)].

[155] R. Wendell. Atmospheric Neutrino Oscillations at Super-Kamiokande. PoS, ICRC2015:1062, 2016. doi: 10.22323/1.236.1062.

[156] L. Wolfenstein. Neutrino oscillations in matter. Physical Review D, 17: 2369–2374, May 1978. doi: 10.1103/PhysRevD.17.2369. URL https:// link.aps.org/doi/10.1103/PhysRevD.17.2369.

[157] L. Wolfenstein. Neutrino oscillations and stellar collapse. Physical Review D, 20:2634–2635, Nov 1979. doi: 10.1103/PhysRevD.20.2634. URL https: //link.aps.org/doi/10.1103/PhysRevD.20.2634.

[158] D. Xue-Feng et al. Measurement of the fluorescence quantum yield of bisMSB. Chinese Physics C, 39(12):126001, 2015.

[159] S. Yamada et al. Commissioning of the New Electronics and Online System for the Super-Kamiokande Experiment. IEEE Transactions on Nuclear Science, 57(2):428–432, apr 2010. ISSN 0018-9499. doi: 10.1109/TNS. 2009.2034854.

[160] Q. Zhao. Flasher Identification at Daya Bay. Poster presented at ACAT2013, Beijing, China.

参考文献をもっと見る