リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Tumor Shrinkage by Metyrapone in Cushing Disease Exhibiting Glucocorticoid-Induced Positive Feedback」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Tumor Shrinkage by Metyrapone in Cushing Disease Exhibiting Glucocorticoid-Induced Positive Feedback

Tsujimoto, Yasutaka Shichi, Hiroki Fukuoka, Hidenori Yamamoto, Masaaki Sato, Itsuko Imanishi, Takamitsu Nakamura, Tomoaki Inoshita, Naoko Ishida, Atsushi Yamada, Shozo Takahashi, Yutaka Chihara, Kazuo 神戸大学

2021.06

概要

Context Paradoxical increases in serum cortisol in the dexamethasone suppression test (DST) have been rarely observed in Cushing disease (CD). Its pathophysiology and prevalence remain unclear. Case Description A 62-year-old woman with suspected CD showed paradoxical increases in cortisol after both 1-mg and 8-mg DST (1.95-fold and 2.52-fold, respectively). The initiation of metyrapone paradoxically decreased plasma adrenocorticotropic hormone (ACTH) levels and suppressed cortisol levels. Moreover, the pituitary tumor considerably shrank during metyrapone treatment. Ex Vivo Experiments The resected tumor tissue was enzymatically digested, dispersed, and embedded into Matrigel as 3D cultured cells. ACTH levels in the media were measured. In this tumor culture, ACTH levels increased 1.3-fold after dexamethasone treatment (P < 0.01) while control tumor cultures exhibited no increase in ACTH levels, but rather a 20% to 40% suppression (P < 0.05). Clinical Study A cross-sectional, retrospective, multicenter study that included 92 patients with CD who underwent both low-dose and high-dose DST from 2014 to 2020 was performed. Eight cases (8.7%) showed an increase in serum cortisol after both low-dose and high-dose DST. Conclusion This is the first report of a patient with glucocorticoid (GC)-driven positive feedback CD who showed both ACTH suppression and tumor shrinkage by metyrapone. Our cohort study revealed that 8.7% of patients with CD patients possibly possess GC-driven positive-feedback systems, thereby suggesting the presence of a new subtype of CD that is different from the majority of CD cases. The mechanisms exhibiting GC positive feedback in CD and the therapeutic approach for these patients remain to be investigated.

この論文で使われている画像

関連論文

参考文献

1. Melmed S. Pituitary-Tumor Endocrinopathies. N Engl J Med.

2020;382(10):937-950.

2. Nieman LK, Biller BM, Findling JW, et al. The diagnosis of

Cushing’s syndrome: an Endocrine Society Clinical Practice

Guideline. J Clin Endocrinol Metab. 2008;93(5):1526-1540.

3. Gjerstad JK, Lightman SL, Spiga F. Role of glucocorticoid negative feedback in the regulation of HPA axis pulsatility. Stress.

2018;21(5):403-416.

4. Forman BH, Marban E, Kayne RD, et al. Ectopic ACTH syndrome due to pheochromocytoma: case report and review of the

literature. Yale J Biol Med. 1979;52(2):181-189.

5. Terzolo M, Alì A, Pia A, et al. Cyclic Cushing’s syndrome due

to ectopic ACTH secretion by an adrenal pheochromocytoma. J

Endocrinol Invest. 1994;17(11):869-874.

6. Oh HC, Koh JM, Kim MS, et al. A case of ACTH-producing

pheochromocytoma associated with pregnancy. Endocr J.

2003;50(6):739-744.

7. Danilovic DL, Brandão Neto RA, D’Abronzo H, Menezes MR,

Lucon AM, Mendonca BB. Ectopic ACTH syndrome caused by

pheochromocytoma: computed tomography-guided percutaneous ethanol injection as an alternative treatment. J Endocrinol

Invest. 2007;30(9):780-786.

8. Brenner N, Kopetschke R, Ventz M, Strasburger CJ, Quinkler M,

Gerl H. Cushing’s syndrome due to ACTH-secreting

pheochromocytoma. Can J Urol. 2008;15(1):3924-3927.

9. Cassarino MF, Ambrogio AG, Pagliardini L, et al. ACTH secreting pheochromocytoma with false-negative ACTH

immunohistochemistry. Endocr Pathol. 2012;23(3):191-195.

10. Sakuma I, Higuchi S, Fujimoto M, et al. Cushing syndrome

due to ACTH-secreting pheochromocytoma, aggravated by

glucocorticoid-driven positive-feedback loop. J Clin Endocrinol

Metab. 2016;101(3):841-846.

11. Falhammar H, Calissendorff J, Höybye C. Frequency of

Cushing’s syndrome due to ACTH-secreting adrenal medullary

lesions: a retrospective study over 10 years from a single center.

Endocrine. 2017;55(1):296-302.

12. Inoue M, Okamura K, Kitaoka C, et al. Metyrapone-responsive

ectopic ACTH-secreting pheochromocytoma with a vicious

Downloaded from https://academic.oup.com/jes/article/5/6/bvab055/6205391 by Kobe Universtiy Library user on 16 September 2022

USP48, and BRAF variants in our study. Further investigation is needed to elucidate the underlying mechanism

of GC-mediated positive feedback, including the methylation status of the POMC promoter region in these

ACTHomas.

In this study, we performed a retrospective multicenter

analysis, showing that the prevalence of paradoxical rise

both after LDDST and HDDST was 8.7%, which is more

than expected. In these paradoxical rise subjects, tumor

diameter was larger and MRI findings exhibited a more invasive than decreased group. These data support the previous reports that showing the recurrent rates is higher in

cyclic Cushing disease [43].

In conclusion, we presented a case of CD that clearly

showed GC-driven positive feedback, both clinically

and experimentally. Intriguingly, tumor shrinkage in this

case was seen during metyrapone treatment, suggesting

GC positive feedback response not only to ACTH secretion but also to tumor proliferation. Further studies are

needed to explore the detailed molecular mechanisms by

which these tumors have GC-dependent tumor progression and ACTH production. Regarding the prevalence of

ACTHoma with a GC positive feedback loop, our CD cohort study discovered it in 8.7% of the 92 patients with

CD, which is not infrequent, thereby suggesting the presence of a new subtype of CD different from the majority

of CD cases.

Journal of the Endocrine Society, 2021, Vol. 5, No. 6

Journal of the Endocrine Society, 2021, Vol. 5, No. 6

28. Fukasawa M, Sawada N, Miyamoto T, et al. Laparoscopic unilateral total and contralateral subtotal adrenalectomy for bilateral

adrenocorticotropic hormone-secreting pheochromocytoma:

report of a rare case. J Endourol Case Rep. 2016;2(1):232-234.

29. Loh KC, Gupta R, Shlossberg AH. Spontaneous remission of

ectopic Cushing’s syndrome due to pheochromocytoma: a case

report. Eur J Endocrinol. 1996;135(4):440-443.

30. Iwayama H, Hirase S, Nomura Y, et al. Spontaneous adrenocorticotropic hormone (ACTH) normalisation due to tumour

regression induced by metyrapone in a patient with ectopic

ACTH syndrome: case report and literature review. BMC

Endocr Disord. 2018;18(1):19.

31. Ayroldi E, Cannarile L, Delfino DV, Riccardi C. A dual role for

glucocorticoid-induced leucine zipper in glucocorticoid function: tumor growth promotion or suppression? Cell Death Dis.

2018;9(5):463.

32. Yano A, Fujii Y, Iwai A, Kageyama Y, Kihara K. Glucocorticoids

suppress tumor angiogenesis and in vivo growth of prostate

cancer cells. Clin Cancer Res. 2006;12(10):3003-3009.

33. Lin KT, Sun SP, Wu JI, Wang LH. Low-dose glucocortic oids suppresses ovarian tumor growth and metastasis in

an immunocompetent syngeneic mouse model. PLoS One.

2017;12(6):e0178937.

34. Shinozawa T, Yoshikawa HY, Takebe T. Reverse engineering

liver buds through self-driven condensation and organization

towards medical application. Dev Biol. 2016;420(2):221-229.

35. Takebe T, Zhang B, Radisic M. Synergistic engineering: organoids

meet organs-on-a-chip. Cell Stem Cell. 2017;21(3):297-300.

36. Tuveson D, Clevers H. Cancer modeling meets human organoid

technology. Science. 2019;364(6444):952-955.

37. Korbonits M, Bujalska I, Shimojo M, et al. Expression of 11

beta-hydroxysteroid dehydrogenase isoenzymes in the human

pituitary: induction of the type 2 enzyme in corticotropinomas

and other pituitary tumors. J Clin Endocrinol Metab.

2001;86(6):2728-2733.

38. Riebold M, Kozany C, Freiburger L, et al. A C-terminal

HSP90 inhibitor restores glucocorticoid sensitivity and relieves a mouse allograft model of Cushing disease. Nat Med.

2015;21(3):276-280.

39. Bilodeau S, Vallette-Kasic S, Gauthier Y, et al. Role of Brg1

and HDAC2 in GR trans-repression of the pituitary POMC

gene and misexpression in Cushing disease. Genes Dev.

2006;20(20):2871-2886.

40. Mizoguchi Y, Kajiume T, Miyagawa S, Okada S, Nishi Y,

Kobayashi M. Steroid-dependent ACTH-produced thymic carcinoid: regulation of POMC gene expression by cortisol via methylation of its promoter region. Horm Res. 2007;67(5):257-262.

41. Araki T, Liu NA, Tone Y, et al. E2F1-mediated human POMC

expression in ectopic Cushing’s syndrome. Endocr Relat Cancer.

2016;23(11):857-870.

42. Araki T, Liu X, Kameda H, et al. EGFR induces E2F1-mediated

corticotroph tumorigenesis. J Endocr Soc. 2017;1(2):127-143.

43. Meinardi JR, Wolffenbuttel BH, Dullaart RP. Cyclic

Cushing’s syndrome: a clinical challenge. Eur J Endocrinol.

2007;157(3):245-254.

Downloaded from https://academic.oup.com/jes/article/5/6/bvab055/6205391 by Kobe Universtiy Library user on 16 September 2022

cycle via a glucocorticoid-driven positive-feedback mechanism.

Endocr J. 2018;65(7):755-767.

13. Seki Y, Morimoto S, Saito F, et al. ACTH-dependent cyclic

Cushing syndrome triggered by glucocorticoid excess through

a positive-feedback mechanism. J Clin Endocrinol Metab.

2019;104(5):1788-1791.

14. Kageyama K, Oki Y, Sakihara S, Nigawara T, Terui K, Suda T.

Evaluation of the diagnostic criteria for Cushing’s disease in

Japan. Endocr J. 2013;60(2):127-135.

15. Reincke M, Sbiera S, Hayakawa A, et al. Mutations in the

deubiquitinase gene USP8 cause Cushing’s disease. Nat Genet.

2015;47(1):31-38.

16. Chen J, Jian X, Deng S, et al. Identification of recurrent USP48

and BRAF mutations in Cushing’s disease. Nat Commun.

2018;9(1):3171.

17. Parvin R, Saito-Hakoda A, Shimada H, et al. Role of NeuroD1

on the negative regulation of Pomc expression by glucocorticoid. PLoS One. 2017;12(4):e0175435.

18. French FS, Macfie JA, Baggett B, Williams TF, Van Wyk JJ.

Cushing’s syndrome with a paradoxical response to dexamethasone. Am J Med. 1969;47(4):619-624.

19. Ronald DB, Brown Ronald D, Van Loon GR, Orth DN,

Liddle GW. Cushing’s disease with periodic hormonogenesis:

one explanation for paradoxical response to dexamethasone. J

Clin Endocrinol Metab. 1973;36(3):445-451.

20. Liberman B,

Wajchenberg BL,

Tambascia MA,

Mesquita CH. Periodic remission in Cushing’s disease

with paradoxical dexamethasone response: an expression of periodic hormonogenesis. J Clin Endocrinol Metab.

1976;43(4):913-918.

21. Kuchel O, Bolté E, Chrétien M, et al. Cyclical edema and hypokalemia due to occult episodic hypercorticism. J Clin Endocrinol

Metab. 1987;64(1):170-174.

22. Checchi S, Brilli L, Guarino E, et al. Cyclic Cushing’s disease

with paradoxical response to dexamethasone. J Endocrinol

Invest. 2005;28(8):741-745.

23. Nieman LK, Biller BM, Findling JW, et al.; Endocrine

Society. Treatment of cushing’s syndrome: an endocrine society clinical practice guideline. J Clin Endocrinol Metab.

2015;100(8):2807-2831.

24. Verhelst JA, Trainer PJ, Howlett TA, et al. Short and long-term

responses to metyrapone in the medical management of 91

patients with Cushing’s syndrome. Clin Endocrinol (Oxf).

1991;35(2):169-178.

25. White A, Ray DW, Talbot A, Abraham P, Thody AJ, Bevan JS.

Cushing’s syndrome due to phaeochromocytoma secreting the

precursors of adrenocorticotropin. J Clin Endocrinol Metab.

2000;85(12):4771-4775.

26. Schöneshöfer M, Fenner A, Claus M. Suppressive effect of

metyrapone on plasma corticotrophin immunoreactivity in

normal man. Clin Endocrinol (Oxf). 1983;18(4):363-370.

27. van Dam PS, van Gils A, Canninga-van Dijk MR, de Koning EJ,

Hofland LJ, de Herder WW. Sequential ACTH and catecholamine secretion in a phaeochromocytoma. Eur J Endocrinol.

2002;147(2):201-206.

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る