リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Long-term stability of nickel-based ohmic contacts with n-type and p-type 4H-SiC in a high-temperature environment」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Long-term stability of nickel-based ohmic contacts with n-type and p-type 4H-SiC in a high-temperature environment

Masunaga, Masahiro 大阪大学

2020.10

概要

Long-term thermal stability of specific contact resistance (ρc) in cross-bridge Kelvin resistors (CBKRs), with an Al/TiN/Ti/Ni₂Si/4H-SiC layered structure, was studied. In high-temperature-storage tests at 500 °C, ρc of p-type SiC increased after it decreased to 1/100 from its initial value; however, in high-temperature-storage tests at 300 °C, it was stable up to 1000 h. The initial decline of ρc was due to the formation of titanium-silicide alloy, whose barrier height is lower than that of the Ni₂Si phase. It was found that ρc increased when the aluminum electrode disappeared because aluminum displaced silicon in the silicon-dioxide layer. In thermal-shock tests (-40 °C/300 °C), ρc hardly changed up to 2000 cycles, and that trend was constant regardless of SiC carrier type. In both tests, almost no thermal deterioration of ρc around 300 °C was observed even in air, so it is concluded that the CBKR structure is robust enough for installation in a high-temperature environment such as a nuclear power plant under decommissioning.

この論文で使われている画像

参考文献

1) M. Yoshikawa, H. Itoh, Y. Morita, I. Nashiyama, S. Misawa, H. Okumura, and S. Yoshida, J. Appl Phys. 70 (1991) 1309.

2) K. K. Lee, T. Ohshima, and H. Itoh, IEEE Trans. Nucl. Sci. 50 (2003) 194.

3) A. Akturk, J. M. McGarrity, S. Potbhare, and N. Goldsman, IEEE Trans. Nucl. Sci. 59 (2012) 3258.

4) S. K. Dixit, S. Dhar, J. Rozen, S. Wang, R. D. Schrimpf, D. M. Fleetwood, S. T. Pantelides, J. R. Williams, and L. C. Feldman, IEEE Trans. Nucl. Sci. 53 (2006) 3687.

5) T. Chen, Z. Luo, J. D. Cressler, T. F. Isaacs-Smith, J. R. Williams, G. Chung, and S. D. Clark, Solid-State Electron., 46 (2002) 2231.

6) M. Masunaga, S. Sato, R. Kuwana, N. Sugii, and A. Shima, IEEE Trans. Electron Devices, 67 (2020) 224.

7) S. Saveda, S. Kuroki, L. Lanni, R. Hadayati, T. Ohshima, T. Makino, A. Hallen, and C. M. Zetterling, IEEE Trans. Nucl. Sci. 64 (2017) 852.

8) T. Funaki, J. C. Balda, J. Junghans, A. S. Kashyap, H. A. Mantooth, F. Barlow, T. Kimoto, and T. Hikihara, IEEE Trans. Power Electron., 22 (2007) 1321.

9) M. Okamoto, T. Yatsuo, K. Fukuda, and H. Okumura, Jpn J. Appl. Phys. 48 (2009) 04C087.

10) R. Ghandi, C. P. Chen, L. Yin, X. Zhu, L. Yu, S. Arthur, F. Ahmad, and P. Sandvik, IEEE Electron Device Lett., 35 (2014) 1206.

11) S. Roy, R. C. Murphree, A. Abbasi, A. Rahman, S. Ahmed, J. A. Gattis, A. M. Francis, J. Holmes, H. A. Mantooth, and J. Di, IEEE Trans. Ind. Electron., 64 (2017) 8364.

12) M. Ekstrom, B. G. Malm, and C. M. Zetterling, IEEE Electron Device Lett., 40 (2019) 670.

13) M. Nakajima, M. Kaneko, and T. Kimoto, IEEE Electron Device Lett., 40 (2019) 866.

14) D. B. Slater, G. M. Johnson, L. A. Lipkin, A. V. Survorov, and J. W. Palmour, in Proc. 3rd Int. High-Temperature Electron. Conf., (1996) XI-17.

15) A. Rahman, S. Roy, R. Murphree, R. Kotecha, K. Addington, A. Abbasi, H. A. Mantooth, A. M. Francis, J. Holmes, and J. Di, IEEE J. Emerging Sel. Topics Power Electron., 4 (2016) 935.

16) D. T. Clark, E. P. Ramsay, A. E. Murphy, D. A. Smith, R. F. Thompson, R. A. R. Young, J. D. Cormack, C. Zhu, S. Finney, and J. Fletcher, Mater. Sci. Forum, 679-680 (2011) 726.

17) L. C. Yu, G. T. Dunne, K. S. Matocha, K. P. Cheung, J. S. Suehle, and K. Sheng, IEEE Trans. Device Mater. Rel., 10 (2010) 418.

18) Lisa M. Porter, and Robert F. Davis, Mater. Sci. Eng. B 34 (1995) 83.

19) Sang Youn Han, Ki Hong Kim, Jong Kyu Kim, Ho Won Jang, Kwang Ho Lee, Nam-Kyun Kim, Eun Dong Kim, and Jong-Lam Lee, Appl. Phys. Lett. 79 (2001) 1816.

20) F. La Via, F. Roccaforte, V. Raineri, M. Mauceri, A. Ruggiero, P. Musumeci, L. Calcagno, A. Castaldini, and A. Cavallini, Microelectron. Eng. 70 (2003) 519.

21) A. V. Kuchuk, P. Borowicz, M. Wzorek, M. Borysiewicz, R. Ratajczak, K. Golaszewska, E. Kaminska, V. Kladko, and A. Piotrowska, Adv. Condens. Matter Phys. 2016 (2016) 9273702.

22) Sang Youn Han and Jong-Lam Lee, J. Electrochem. Soc. 149 (2002) G189.

23) C. A. Fisher, M. R. Jennings, Y. K. Sharma, A. Sanchez-Fuentes, D. Walker, P. M. Gammon, A. Perez-Tomas, S. M. Thomas, S. E. Burrows, and P. A. Mawby, International journal of Fundamental Physical Sciences (IJFPS), 4 (2014) 95.

24) A. Frazzetto, F. Giannazzo, R. L. Nigaro, V. Raineri, and F. Roccaforte, J. Phys. D: Appl. Phys. 44 (2011) 255302.

25) Brian J. Johnson and Michael A. Capano, J. Appl. Phys. 95 (2004) 5616.

26) Lingqin Huang, Mali Xia, and Xiaogang Gu, J. Cryst. Growth, 531 (2020) 125353.

27) H. Shimizu, A. Shima, Y. Shimamoto, and N. Iwamuro, Jpn J. Appl. Phys. 56 (2017) 04CR15.

28) K. Buchholt, R. Ghandi, M. Domeij, C. -M. Zetterling, J. Lu, P. Eklund, L. Hultman, and A. Lloyd Spetz, Appl. Phys. Lett. 98 (2011) 042108.

29) K. Ito, T. Onishi, H. Takeda, K. Kohama, S. Tsukimoto, M. Konno, Y. Suzuki, and M. Murakami, J. Electron. Mater. 37 (2008) 1674.

30) S. Tsukimoto, T. Sakai, T. Onishi, K. Ito, and M. Murakami, J. Electron. Mater. 34 (2005) 1310.

31) S. Tanimoto, N. Kiritani, M. Hoshi, and H. Okushi, Mater. Sci. Forum, 389 (2002) 879.

32) M. Vivona, G. Greco, F. Giannazzo, R. Lo Nigro, S. Rascuna, M. Saggio, and F. Roccaforte, Semicond. Sci. Technol. 29 (2014) 075018.

33) A. Virshup, L. M. Porter, D. Lukco, K. Buchholt, L. Hultman, and A. L. Spetz, Journal of Electronic Materials, 38 (2009) 569.

34) Z. Wang, W. Liu, and C. Wang, J. Electron. Mater. 45 (2016) 267.

35) S. Liu, Z. He, L. Zheng, B. Liu, F. Zhang, L. Dong, L. Tian, Z. Shen, J. Wang, Y. Huang, Z. Fan, X. Liu, G. Yan, W. Zhao, L. Wang, G. Sun, F. Yang, and Y. Zeng, Appl. Phys. Lett. 105 (2014) 122106.

36) C. M. Eichfeld, M. A. Horsey, S. E. Mohney, A. V. Adedeji, J. R. Williams, Thin Solid Films, 485 (2005) 207.

37) R. P. Devaty, D. J. Larkin, and S. E. Saddow, Mater. Sci. Forum, 527 (2006) 883.

38) R. S. Okojie, A. A. Ned, A. D. Kurtz, and W. N. Carr, IEEE Trans. Electron Devices, 46 (1999) 269.

39) W. Daves, A. Krauss, V. Haublein, A. J. Bauer, and L. Frey, Mater. Sci. Forum, 717 (2012) 1089.

40) T. Marinova, A. K. -Georgieva, V. Krastev, R. Kakanakov, M. Neshev, L. Kassamakova, O. Noblanc, C. Arnodo, S. Cassette, and C. Brylinski, Mater. Sci. Eng. B 46 (1997) 223.

41) S. Tanimoto, K. Watanabe, H. Tanizawa, K. Matsui, and S. Sato, Smart Processing Society for Materials, Environment & Energy, 2 (2013) 144 [in Japanese].

42) A. M. Cowley and S. M. Sze, J. Appl. Phys. 36 (1965) 3212.

43) F. Dadabhai, F. Gaspari, S. Zukotynski, and C. Bland, J. Appl Phys. 80 (1996) 6505.

44) A. Scorzoni, F. Moscatelli, A. Poggi, G. C. Cardinali, and R. Nipoti, Mater. Sci. Forum, 457-460 (2004) 881.

45) L. Huang, B. Liu, Q. Zhu, S. Chen, M. Gao, F. Qin, and D. Wang, Appl. Phys. Lett. 100 (2012) 263503.

46) G. J. van. Gurp, J. L. C. Daams, A. van Oostrom, L. J. M. Augustus, and Y. Tamminga, J. Appl. Phys. 50 (1979) 6915.

47) W. Song, M. Yoshitake, Applied Surface Science 251 (2005) 14.

48) J. Bardeen, Phys. Rev. 71 (1947) 717.

49) A. M. Cowley, and S. M. Sze, J. Appl. Phys. 36 (1965) 3212.

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る