リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「Failure to confirm a sodium-glucose cotransporter 2 inhibitor-induced hematopoietic effect in non-diabetic rats with renal anemia」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

Failure to confirm a sodium-glucose cotransporter 2 inhibitor-induced hematopoietic effect in non-diabetic rats with renal anemia

山﨑 大輔 香川大学 DOI:10.1111/jdi.13205

2020.06.25

概要

Aims/introduction: Clinical studies have shown that treatment with inhibitors of sodium-glucose cotransporter 2 (SGLT2) significantly increases the hematocrit in patients with type 2 diabetes. To investigate whether SGLT2 inhibitors directly promote erythropoietin production independently on blood glucose reduction, the hematopoietic effect of the specific SGLT2 inhibitor, luseogliflozin, was examined in non-diabetic rats with renal anemia.
Materials and methods: Renal anemia was induced by treatment with adenine (200 or 600 mg/kg/day, orally for 10 days) in non-diabetic Wistar-Kyoto or Wistar rats, respectively. Luseogliflozin (10 mg/kg bodyweight) or vehicle (0.5% carboxymethyl cellulose) was then administered for 6 weeks. The hematocrit and the hemoglobin (Hb), blood urea nitrogen, plasma creatinine, and plasma erythropoietin levels were monitored.

この論文で使われている画像

参考文献

1. Gallo LA, Ward MS, Fotheringham AK, et al. Once daily

administration of the SGLT2 inhibitor, empagliflozin,

attenuates markers of renal fibrosis without improving

albuminuria in diabetic db/db mice. Sci Rep 2016; 6: 26428.

2. Gembardt F, Bartaun C, Jarzebska N, et al. The SGLT2

inhibitor empagliflozin ameliorates early features of diabetic

nephropathy in BTBR ob/ob type 2 diabetic mice with and

without hypertension. Am J Physiol Renal Physiol 2014; 307:

F317–325.

3. Wanner C, Inzucchi SE, Lachin JM, et al. Empagliflozin and

progression of kidney disease in type 2 diabetes. N Engl J

Med 2016; 375: 323–334.

4. Neal B, Perkovic V, Matthews DR, et al. Rationale, design and

baseline characteristics of the CANagliflozin cardioVascular

Assessment Study-Renal (CANVAS-R): A randomized,

placebo-controlled trial. Diabetes Obes Metab 2017; 19: 387–

393.

5. Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and Renal

Outcomes in Type 2 Diabetes and Nephropathy. N Engl J

Med 2019; 380: 2295–2306.

6. Gilbert RE. Sodium-glucose linked transporter-2 inhibitors:

potential for renoprotection beyond blood glucose

lowering? Kidney Int 2014; 86: 693–700

7. Sano M, Takei M, Shiraishi Y, et al. Increased hematocrit

during sodium-glucose cotransporter 2 inhibitor therapy

indicates recovery of tubulointerstitial function in diabetic

kidneys. J Clin Med Res 2016; 8: 844–847.

8. Sano M, Goto S. Possible mechanism of hematocrit

elevation by sodium glucose cotransporter 2 inhibitors and

associated beneficial renal and cardiovascular effects.

Circulation 2019; 139: 1985–1987.

ª 2019 The Authors. Journal of Diabetes Investigation published by AASD and John Wiley & Sons Australia, Ltd

ORIGINAL ARTICLE

SGLT2 inhibitor in non-diabetic renal anemia

9. Baker WL, Smyth LR, Riche DM, et al. Effects of sodiumglucose co-transporter 2 inhibitors on blood pressure: a

systematic review and meta-analysis. J Am Soc Hypertens

2014; 8(4): 262–275.e9.

10. Inagaki N, Kondo K, Yoshinari T, et al. Efficacy and safety of

canagliflozin in Japanese patients with type 2 diabetes: a

randomized, double-blind, placebo-controlled, 12-week

study. Diabetes Obes Metab 2013; 15: 1136–1145.

11. Yale JF, Bakris G, Cariou B, et al. Efficacy and safety of

canagliflozin in subjects with type 2 diabetes and chronic

kidney disease. Diabetes Obes Metab 2013; 15: 463–473.

12. Lambers Heerspink HJ, de Zeeuw D, Wie L, et al.

Dapagliflozin a glucose-regulating drug with diuretic

properties in subjects with type 2 diabetes. Diabetes Obes

Metab 2013; 15: 853–862.

13. Bosman DR, Winkler AS, Marsden JT, et al. Anemia with

erythropoietin deficiency occurs early in diabetic

nephropathy. Diabetes Care 2001; 24: 495–499.

14. Rahman A, Yamazaki D, Sufiun A, et al. A novel approach to

adenine-induced chronic kidney disease associated anemia

in rodents. PLoS ONE 2018; 13: e0192531.

15. Hitomi H, Kasahara T, Katagiri N, et al. Human pluripotent

stem cell-derived erythropoietin-producing cells

ameliorate renal anemia in mice. Sci Transl Med 2017; 9:

eaaj2300.

16. Rafiq K, Nishiyama A, Konishi Y, et al. Regression of

glomerular and tubulointerstitial injuries by dietary salt

reduction with combination therapy of angiotensin II

receptor blocker and calcium channel blocker in Dahl saltsensitive rats. PLoS ONE 2014; 9: e107853.

17. Nishioka S, Nakano D, Kitada K, et al. The cyclin-dependent

kinase inhibitor p21 is essential for the beneficial effects of

renal ischemic preconditioning on renal ischemia/

reperfusion injury in mice. Kidney Int 2014; 85: 871–879.

18. Liu Y. Cellular and molecular mechanisms of renal fibrosis.

Nat Rev Nephrol 2011; 7: 684–696.

19. Nakagawa M, Taniguchi Y, Senda S, et al. A novel efficient

feeder-free culture system for the derivation of human

induced pluripotent stem cells. Sci Rep 2014; 4: 3594.

20. Zhang Y, Nakano D, Guan Y, et al. A sodium-glucose

cotransporter 2 inhibitor attenuates renal capillary injury and

fibrosis by a vascular endothelial growth factor-dependent

pathway after renal injury in mice. Kidney Int 2018; 94: 524–

535.

21. Nauck M, del Prato S, Meier JJ, et al. Dapagliflozin versus

glipizide as add-on therapy in patients with type 2 diabetes

who have inadequate glycemic control with metformin.

Dtsch Med Wochenschr 2013; 138(Suppl 1): S6–15.

22. Rosenstock J, Aggarwal N, Polidori D, et al. Dose-ranging

effects of canagliflozin, a sodium-glucose cotransporter 2

inhibitor, as add-on to metformin in subjects with type 2

diabetes. Diabetes Care 2012; 35: 1232–1238.

23. Wilding JP, Woo V, Soler NG, et al. Long-term efficacy of

dapagliflozin in patients with type 2 diabetes mellitus

J Diabetes Investig Vol.  No.   2020

ORIGINAL ARTICLE

Yamazaki et al.

24.

25.

26.

27.

28.

29.

10

receiving high doses of insulin: a randomized trial. Ann

Intern Med 2012; 156: 405–415.

Mima A. Renal protection by sodium-glucose cotransporter

2 inhibitors and its underlying mechanisms in diabetic

kidney disease. J Diabet Complicat 2018; 32: 720–725.

Yamamoto K, Uchida S, Kitano K, et al. TS-071 is a novel,

potent and selective renal sodium-glucose cotransporter 2

(SGLT2) inhibitor with anti-hyperglycaemic activity. Br J

Pharmacol 2011; 164: 181–191.

Kojima N, Williams JM, Takahashi T, et al. Effects of a new

SGLT2 inhibitor, luseogliflozin, on diabetic nephropathy in

T2DN rats. J Pharmacol Exp Ther 2013; 345: 464–472.

Vallon V, Rose M, Gerasimova M, et al. Knockout of Naglucose transporter SGLT2 attenuates hyperglycemia and

glomerular hyperfiltration but not kidney growth or injury

in diabetes mellitus. Am J Physiol Renal Physiol 2013; 304:

F156–167.

Vallon V, Gerasimova M, Rose MA, et al. SGLT2 inhibitor

empagliflozin reduces renal growth and albuminuria in

proportion to hyperglycemia and prevents glomerular

hyperfiltration in diabetic Akita mice. Am J Physiol Renal

Physiol 2014; 306: F194–204.

Masuda T, Watanabe Y, Fukuda K, et al. Unmasking a

sustained negative effect of SGLT2 inhibition on body fluid

volume in the rat. Am J Physiol Renal Physiol 2018; 315:

F653–F664.

J Diabetes Investig Vol.  No.   2020

http://wileyonlinelibrary.com/journal/jdi

30. Bailey CJ, Gross JL, Pieters A, et al. Effect of dapagliflozin in

patients with type 2 diabetes who have inadequate

glycaemic control with metformin: a randomised, doubleblind, placebo-controlled trial. Lancet 2010; 375: 2223–2233.

31. Kohan DE, Fioretto P, Tang W, et al. Long-term study of

patients with type 2 diabetes and moderate renal

impairment shows that dapagliflozin reduces weight and

blood pressure but does not improve glycemic control.

Kidney Int 2014; 85: 962–971.

32. Cherney DZI, Cooper ME, Tikkanen I, et al. Pooled analysis

of Phase III trials indicate contrasting influences of renal

function on blood pressure, body weight, and HbA1c

reductions with empagliflozin. Kidney Int 2018; 93: 231–244.

33. Tanaka H, Takano K, Iijima H, et al. Factors affecting

canagliflozin-induced transient urine volume increase in

patients with type 2 diabetes mellitus. Adv Ther 2017; 34:

436–451.

34. Lin B, Koibuchi N, Hasegawa Y, et al. Glycemic control with

empagliflozin, a novel selective SGLT2 inhibitor, ameliorates

cardiovascular injury and cognitive dysfunction in obese

and type 2 diabetic mice. Cardiovasc Diabetol 2014; 13: 148.

35. Azushima K, Gurley SB, Coffman TM. Modelling diabetic

nephropathy in mice. Nat Rev Nephrol 2018; 14: 48–56.

36. Kitada M, Ogura Y, Koya D. Rodent models of diabetic

nephropathy: their utility and limitations. Int J Nephrol

Renovasc Dis 2016; 9: 279–290.

ª 2019 The Authors. Journal of Diabetes Investigation published by AASD and John Wiley & Sons Australia, Ltd

...

参考文献をもっと見る

全国の大学の
卒論・修論・学位論文

一発検索!

この論文の関連論文を見る