リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

リケラボ 全国の大学リポジトリにある学位論文・教授論文を一括検索するならリケラボ論文検索大学・研究所にある論文を検索できる

大学・研究所にある論文を検索できる 「The Xanthine Oxidase Inhibitor Febuxostat Suppresses the Progression of IgA Nephropathy, Possibly via Its Anti-Inflammatory and Anti-Fibrotic Effects in the gddY Mouse Model」の論文概要。リケラボ論文検索は、全国の大学リポジトリにある学位論文・教授論文を一括検索できる論文検索サービスです。

コピーが完了しました

URLをコピーしました

論文の公開元へ論文の公開元へ
書き出し

The Xanthine Oxidase Inhibitor Febuxostat Suppresses the Progression of IgA Nephropathy, Possibly via Its Anti-Inflammatory and Anti-Fibrotic Effects in the gddY Mouse Model

井上 賢紀 広島大学

2020.03.23

概要

The search for methods of preventing chronic kidney disease (CKD) progression is still an
important and ongoing challenge [1]. Usually, lifestyle and dietary modifications aimed at reducing
sodium intake as well as renin-angiotensin-aldosterone system blockers are recommended [2–4].
On the other hand, several recent clinical studies have suggested that xanthine oxidase inhibitors (XOi),
including febuxostat, beneficially inhibit CKD progression [5]. Experimentally, febuxostat also exerts
direct renal benefits, independently of its uric acid (UA) lowering effect [6–9]. Although reduction
of oxidative stress by XO inhibition might be involved in the underlying mechanism, clear evidence
has not as yet been obtained. At present, the diseases impacted by the preventive effects of XOi on
renal failure progression, which appear to include diabetes mellitus, glomerular sclerosis, chronic
glomerulonephritis, and various autoimmune disorders, remain to be fully clarified.
IgA nephropathy is a kidney disease characterized by deposition of immunoglobulin A (IgA) in
the glomeruli. This results in local chronic inflammation, leading to glomerular injury and impairment
of renal functions such as filtration [10]. The courses of IgA nephropathy vary greatly among
patients, although approximately 30% will have end-stage renal disease within 20 years of the initial
diagnosis [11]. At present, there is no definitive cure for IgA nephropathy, with blood pressure control
and/or the usage of anti-inflammatory agents such as steroids only slowing its progression [12–15].
We investigated the effects of febuxostat, one of the widely used XOis, on the development of IgA
nephropathy, using gddY mice, a rodent model of spontaneous IgA nephropathy [16]. Unlike HIGA
mice showing only mild proteinuria without hematuria, gddY mice exhibit an early onset of glomerular
IgA deposition and clinicopathological aberrations other than hematuria, features resembling those of
human IgA nephropathy [17]. To date, neither clinical nor basic research has been carried out regarding
the efficacy of XOi as a treatment for IgA nephropathy. Thus, to our knowledge, this is the first study
to demonstrate the benefits of XOis for treating IgA nephropathy. In particular, febuxostat treatment
markedly suppressed inflammation and the resultant collagen deposition in the kidneys of gddY mice.
These results suggest the potential of febuxostat as a treatment for human IgA nephropathy.
2. Results
2.1. Xanthine Oxidase Inhibitor Febuxostat Prevents Progression of IgA Nephropathy
Sixteen nine-week-old female gddY mice were divided into two groups and were given water
either with (15 µg/mL) or without febuxostat (Figure 1A). At nine weeks after the initiation of
febuxostat, four of the eight untreated gddY mice had died, while all eight gddY mice receiving
febuxostat in their drinking water survived (Figure 1B). Although a previous report indicated gddY
mice to have a higher death rate than normal mice [18], the death rate of untreated gddY mice in the
present study exceeded our expectations. We speculate that these deaths were due to renal failure
but have no proof. Fortunately, there were four untreated gddY mice that survived and appeared to
be as healthy as the febuxostat-treated gddY mice and the normal control mice, judging from their
activities and other parameters. Thus, the following experiments were performed by analyzing three
groups, i.e., the four untreated gddY, eight febuxostat-treated gddY and eight normal BALB/c mice.
While the gddY mice weighed significantly more than BALB/c mice, febuxostat treatment did not
affect the weights of gddY mice (Figure 1C). Serum uric acid concentration was significantly lowered
in febuxostat-treated gddY mice compared to untreated gddY mice (Figure 1D). Serum IgA levels
showed large variations among individual mice, but differences among the three groups were not
significant (Figure 1E). ...

参考文献

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

DuBose, T.D., Jr. American Society of Nephrology Presidential Address 2006: Chronic kidney disease as

a public health threat—New strategy for a growing problem. J. Am. Soc. Nephrol. 2007, 8, 1038–1045.

[CrossRef] [PubMed]

Vejakama, P.; Atiporn, I.; McKay, G.J.; Maxwell, A.P.; McEvoy, M.; Attia, J.; Thakkinstian, A. Treatment effects

of renin-angiotensin aldosterone system blockade on kidney failure and mortality in chronic kidney disease

patients. BMC Nephrol. 2017, 18, 342. [CrossRef] [PubMed]

Riccio, E.; Di Nuzzi, A.; Pisani, A. Nutritional treatment in chronic kidney disease: The concept of

nephroprotection. Clin. Exp. Nephrol. 2015, 19, 161–167. [CrossRef] [PubMed]

Ritz, E.; Schwenger, V. Lifestyle modification and progressive renal failure. Nephrology 2005, 10, 387–392.

[CrossRef]

Tanaka, K.; Nakayama, M.; Kanno, M.; Kimura, H.; Watanabe, K.; Tani, Y.; Hayashi, Y.; Asahi, K.; Terawaki, H.;

Watanabe, T. Renoprotective effects of febuxostat in hyperuricemic patients with chronic kidney disease:

A parallel-group, randomized, controlled trial. Clin. Exp. Nephrol. 2015, 19, 1044–1053. [CrossRef]

Sanchez-Lozada, L.G.; Tapia, E.; Soto, V.; Avila-Casado, C.; Franco, M.; Zhao, L.; Johnson, R.J. Treatment

with the xanthine oxidase inhibitor febuxostat lowers uric acid and alleviates systemic and glomerular

hypertension in experimental hyperuricaemia. Nephrol. Dial. Transpl. 2008, 23, 1179–1185. [CrossRef]

[PubMed]

Lee, H.J.; Jeong, K.H.; Kim, Y.G.; Moon, J.Y.; Lee, S.H.; Ihm, C.G.; Sung, J.Y.; Lee, T.W. Febuxostat ameliorates

diabetic renal injury in a streptozotocin-induced diabetic rat model. Am. J. Nephrol. 2014, 40, 56–63.

[CrossRef] [PubMed]

Akimoto, T.; Morishita, Y.; Ito, T.; Iimura, O.; Tsunematsu, S.; Watanabe, Y.; Kusano, Y.; Nagata, D. Febuxostat

for hyperuricemia in patients with advanced chronic kidney disease. Drug Target Insights 2014, 8, 39–43.

[CrossRef]

Becker, M.A.; Schumacher, H.R.; Espinoza, L.R.; Wells, A.F.; MacDonald, P.; Lloyd, E.; Lademacher, C.

The urate-lowering efficacy and safety of febuxostat in the treatment of the hyperuricemia of gout:

The CONFIRMS trial. Arthritis Res. Ther. 2010, 12, R63. [CrossRef]

Wyatt, R.J.; Julian, B.A. The pathophysiology of IgA nephropathy. J. Am. Soc. Nephrol. 2013, 368, 2402–2414.

Schena, F.P. A retrospective analysis of the natural history of primary IgA nephropathy worldwide.

Am. J. Med. 1990, 89, 209–215. [CrossRef]

Vogt, L.; Waanders, F.; Boomsma, F.; de Zeeuw, D.; Navis, G. Effects of dietary sodium and

hydrochlorothiazide on the antiproteinuric efficacy of losartan. J. Am. Soc. Nephrol. 2008, 19, 999–1007.

[CrossRef] [PubMed]

Slagman, M.C.; Waanders, F.; Hemmelder, M.H.; Woittiez, A.J.; Janssen, W.M.; Lambers Heerspink, H.J.;

Navis, G.; Laverman, G.D. Moderate dietary sodium restriction added to angiotensin converting enzyme

inhibition compared with dual blockade in lowering proteinuria and blood pressure: Randomised controlled

trial. BMJ 2011, 343, d4366. [CrossRef] [PubMed]

Cheng, J.; Zhang, X.; Tian, J.; Li, Q.; Chen, J. Combination therapy an ACE inhibitor and an angiotensin

receptor blocker for IgA nephropathy: A meta-analysis. Int. J. Clin. Pract. 2012, 66, 917–923. [CrossRef]

[PubMed]

Int. J. Mol. Sci. 2018, 19, 3967

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

12 of 13

Lv, J.; Xu, D.; Perkovic, V.; Ma, X.; Johnson, D.W.; Woodward, M.; Levin, A.; Zhang, H.; Wang, H.

Corticosteroid therapy in IgA nephropathy. J. Am. Soc. Nephrol. 2012, 23, 1108–1116. [CrossRef] [PubMed]

Suzuki, H.; Suzuki, Y.; Novak, J.; Tomino, Y. Development of animal models of human IgA nephropathy.

Drug Discov. Today Dis. Models 2014, 11, 5–11. [CrossRef] [PubMed]

Okazaki, K.; Suzuki, Y.; Otsuji, M.; Suzuki, H.; Kihara, M.; Kajiyama, T.; Hashimoto, A.; Nishimura, H.;

Brown, R.; Hall, S. Development of a model of early-onset IgA nephropathy. J. Am. Soc. Nephrol. 2012, 23,

1364–1374. [CrossRef]

El Karoui, K.; Hill, G.S.; Karras, A.; Moulonguet, L.; Caudwell, V.; Loupy, A.; Bruneval, P.; Jacquot, C.;

Nochy, D. Focal segmental glomerulosclerosis plays a major role in the progression of IgA nephropathy. II.

Light microscopic and clinical studies. Kidney Int. 2011, 79, 643–654. [CrossRef]

Lim, C.S.; Yoon, H.J.; Kim, Y.S.; Ahn, C.; Han, J.S.; Kim, S.; Lee, J.S.; Lee, H.S.; Chae, D.W. Clinicopathological

correlation of intrarenal cytokines and chemokines in IgA nephropathy. Nephrology 2003, 8, 21–27. [CrossRef]

Henricus, A.; Mutsaers, M.; Stribos Elisabeth, G.D.; Glorieux, G.; Vanholder, R.; Olinga, P. Chronic kidney

disease and fibrosis: The role of uremic retention solutes. Front. Med. 2015, 2, 60.

Raij, L.; Azar, S.; Keane, W. Mesangial immune injury, hypertension, and progressive glomerular damage in

Dahl rats. Kidney Int. 1984, 26, 137–143. [CrossRef] [PubMed]

Matsuda, J.; Namba, T.; Takabatake, Y.; Kimura, T.; Takahashi, A.; Yamamoto, T.; Minami, S.; Sakai, S.;

Fujimura, R.; Kaimori, J.Y. Antioxidant role of autophagy in maintaining the integrity of glomerular

capillaries. Autophagy 2018, 14, 53–65. [CrossRef] [PubMed]

Suzuki, H.; Kiryluk, K.; Novak, J.; Moldoveanu, Z.; Herr, A.B.; Renfrow, M.B.; Wyatt, R.J.; Scolari, F.;

Mestecky, J.; Gharavi, A.G. The pathophysiology of IgA nephropathy. J. Am. Soc. Nephrol. 2011, 22,

1795–1803. [CrossRef] [PubMed]

Lai, K.N.; Leung, J.C.; Chan, L.Y.; Saleem, M.A.; Mathieson, P.W.; Tam, K.Y.; Xiao, J.; Lai, F.M.; Tang, S.C.

Podocyte injury induced by mesangial-derived cytokines in IgA nephropathy. Nephrol. Dial. Transp. 2009, 24,

62–72. [CrossRef] [PubMed]

Lai, K.N.; Leung, J.C.; Chan, L.Y.; Saleem, M.A.; Mathieson, P.W.; Lai, F.M.; Tang, S.C. Activation of podocytes

by mesangial-derived TNF-alpha: Glomerulo-podocytic communication in IgA nephropathy. Am. J. Physiol.

Ren. Physiol. 2008, 294, F945–F955. [CrossRef] [PubMed]

Menon, M.C.; Chuang, P.Y.; He, J.C. Role of podocyte injury in IgA nephropathy. Contrib. Nephrol. 2013, 181,

41–51. [PubMed]

Kushiyama, A.; Okubo, H.; Sakoda, H.; Kikuchi, T.; Fujishiro, M.; Sato, H.; Kushiyama, S.; Iwashita, M.;

Nishimura, F.; Fukushima, T. Xanthine oxidoreductase is involved in macrophage foam cell formation and

atherosclerosis development. Arterioscler. Thromb. Vasc. Biol. 2012, 32, 291–298. [CrossRef]

Nakatsu, Y.; Seno, Y.; Kushiyama, A.; Sakoda, H.; Fujishiro, M.; Katasako, A.; Mori, K.; Matsunaga, Y.;

Fukushima, T.; Kanaoka, R. The xanthine oxidase inhibitor febuxostat suppresses development of

nonalcoholic steatohepatitis in a rodent model. Am. J. Physiol. Gastroint. Liver Physiol. 2015, 309, G42–G51.

[CrossRef]

Nomura, J.; Busso, N.; Ives, A.; Matsui, C.; Tsujimoto, S.; Shirakura, T.; Tamura, M.; Kobayashi, T.; So, A.;

Yamanaka, Y. Xanthine oxidase inhibition by febuxostat attenuates experimental atherosclerosis in mice.

Sci. Rep. 2014, 4, 4554. [CrossRef]

Yang, C.C.; Ma, M.C.; Chien, C.T.; Wu, M.S.; Sun, W.K.; Chen, C.F. Hypoxic preconditioning attenuates

lipopolysaccharide-induced oxidative stress in rat kidneys. J. Physiol. 2007, 582, 407–419. [CrossRef]

Landmesser, U.; Spiekermann, S.; Preuss, C.; Sorrentino, S.; Fischer, D.; Manes, C.; Mueller, M.; Drexler, H.

Angiotensin II induces endothelial xanthine oxidase activation: Role for endothelial dysfunction in patients

with coronary disease. Arterioscler. Thromb. Vasc. Biol. 2007, 27, 943–948. [CrossRef] [PubMed]

Ohtsubo, T.; Matsumura, K.; Sakagami, K.; Fujii, K.; Tsuruya, K.; Noguchi, H.; Rovira, II; Finkel, T.; Iida, M.

Xanthine oxidoreductase depletion induces renal interstitial fibrosis through aberrant lipid and purine

accumulation in renal tubules. Hypertension 2009, 5, 868–876. [CrossRef] [PubMed]

Shibagaki, Y.; Ohno, I.; Hosoya, T.; Kimura, K. Safety, efficacy and renal effect of febuxostat in patients with

moderate-to-severe kidney dysfunction. Hypertens. Res. 2014. 37, 919. [CrossRef]

Nakamura, T.; Murase, T.; Nampei, M.; Morimoto, N.; Ashizawa, N.; Iwanaga, T.; Sakamoto, R. Effects of

topiroxostat and febuxostat on urinary albumin excretion and plasma xanthine oxidoreductase activity in

db/db mice. Eur. J. Pharmacol. 2016, 780, 224–231. [CrossRef] [PubMed]

Int. J. Mol. Sci. 2018, 19, 3967

35.

36.

37.

38.

39.

40.

13 of 13

Kosugi, T.; Nakayama, T.; Heinig, M.; Zhang, L.; Yuzawa, Y.; Sanchez-Lozada, L.G.; Roncal, C.; Johnson, R.J.;

Nakagawa, T. Effect of lowering uric acid on renal disease in the type 2 diabetic db/db mice. Am. J. Physiol.

Ren. Physiol. 2009, 297, F481–F488. [CrossRef] [PubMed]

Hosoya, T.; Ohno, I.; Nomura, S.; Hisatome, I.; Uchida, S.; Fujimori, S.; Yamamoto, T.; Hara, S. Effects of

topiroxostat on the serum urate levels and urinary albumin excretion in hyperuricemic stage 3 chronic

kidney disease patients with or without gout. Clin. Exp. Nephrol. 2014, 18, 876–884. [CrossRef] [PubMed]

Yamaguchi, A.; Harada, M.; Yamada, Y.; Hashimoto, K.; Kamijo, Y. Identification of chronic kidney disease

patient characteristics influencing the renoprotective effects of febuxostat therapy: A retrospective follow-up

study. BMC Nephrol. 2017, 18, 162. [CrossRef] [PubMed]

Szalay, C.I.; Erdélyi, K.; Kökény, G.; Lajtár, E.; Godó, M.; Révész, C.; Kaucsár, T.; Kiss, N.; Sárközy, M.;

Csont, T. Oxidative/nitrative stress and inflammation drive progression of doxorubicin-induced renal

fibrosis in rats as revealed by comparing a normal and a fibrosis-resistant rat strain. PLoS ONE 2015, 10,

e0127090. [CrossRef]

Lu, Y.; Wen, J.; Chen, D.P.; Wu, L.L.; Li, Q.G.; Xie, Y.; Wu, D.; Liu, X.; Chen, X.M. Modulation of cyclins

and p53 in mesangial cell proliferation and apoptosis during Habu nephritis. Clin. Exp. Nephrol. 2016, 20,

178–186. [CrossRef]

Satake, K.; Shimizu, Y.; Sasaki, Y.; Yanagawa, H.; Suzuki, H.; Suzuki, Y.; Horikoshi, S.; Honda, S.; Shibuya, K.;

Shibuya, A. Serum under-O-glycosylated IgA1 level is not correlated with glomerular IgA deposition based

upon heterogeneity in the composition of immune complexes in IgA nephropathy. BMC Nephrol. 2014, 15,

89. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

...

参考文献をもっと見る